

DIGITAL SYSTEMS: Course Objectives and Lecture Plan

Aim: At the end of the course the student will be able to analyze, design, and
evaluate digital circuits, of medium complexity, that are based on SSIs, MSIs, and
programmable logic devices.

Module 1: Number Systems and Codes (3)

Number systems: Binary, octal, and hexa-decimal number systems, binary
arithmetic. Codes: Binary code, excess-3 code, gray code, and error detection and
correction codes.

Module 2: Boolean Algebra and Logic Functions (5)

Boolean algebra: Postulates and theorems. Logic functions, minimization of Boolean
functions using algebraic, Karnaugh map and Quine – McClausky methods.
Realization using logic gates

Module 3: Logic Families (4)

Logic families: Characteristics of logic families. TTL, CMOS, and ECL families.

Module 4: Combinational Functions (8)

Realizing logical expressions using different logic gates and comparing their
performance. Hardware aspects logic gates and combinational ICs: delays and
hazards. Design of combinational circuits using combinational ICs: Combinational
functions: code conversion, decoding, comparison, multiplexing, demultiplexing,
addition, and subtraction.

Module 5: Analysis of Sequential Circuits (5)

Structure of sequential circuits: Moore and Melay machines. Flip-flops, excitation
tables, conversions, practical clocking aspects concerning flip-flops, timing and
triggering considerations. Analysis of sequential circuits: State tables, state diagrams
and timing diagrams.

Module 6: Designing with Sequential MSIs (6)

Realization of sequential functions using sequential MSIs: counting, shifting,
sequence generation, and sequence detection.

Module 7: PLDs (3)

Programmable Logic Devices: Architecture and characteristics of PLDs,

Module 8: Design of Digital Systems (6)

State diagrams and their features. Design flow: functional partitioning, timing
relationships, state assignment, output racing. Examples of design of digital systems
using PLDs

Lecture Plan

Modules Learning Units Hours

per
topic

Total
Hours

1. Binary, octal and hexadecimal number
systems, and conversion of number with
one radix to another

1.5 1. Number
Systems and
Codes

2. Different binary codes 1.5

3

3. Boolean algebra and Boolean operators 1.5
4. Logic Functions 1
5. Minimization of logic functions using

Karnaugh -map
1.5

2. Logic
Functions

6. Quine-McClausky method of minimization of
logic functions

1

5

7. Introduction to Logic families 0.5
8. TTL family 1
9. CMOS family 1.5

3.Logic Families

10. Electrical characteristics of logic families 1

4

11. Introduction to combinational circuits, logic
convention, and realization of simple
combinational functions using gates

2

12. Implications of delay and hazard 1
13. Realization of adders and subtractors 2
14. Design of code converters, comparators,

and decoders
2

4. Combinational
Circuits

15. Design of multiplexers, demultiplexers, 1

8

16. Introduction to sequential circuits: Moore
and Mealy machines

1

17. Introduction to flip-flops like SR, JK, D & T
with truth tables, logic diagrams, and
timing relationships

1

18. Conversion of Flip-Flops, Excitation table 1

5. Analysis of
Sequential
 Circuits

19. State tables, and realization of state stables 2

5

20. Design of shift registers and counters 2
21. Design of counters 2

6. Design with
Sequential MSIs

22. Design of sequence generators and
detectors

2

6

23. Introduction to Programmable Devices 1 7. PLDs
24. Architecture of PLDs 2

3

25. State diagrams and their features 2
26. Design flow 1

8. Design of
Digital Systems

27. Design of digital systems using PLDs 3

6

Learning Objectives of the Course

1. Recall

1.1 List different criteria that could be used for optimization of a digital circuit.

1.2 List and describe different problems of digital circuits introduced by the hardware
limitations.

2. Comprehension

2.1 Describe the significance of different criteria for design of digital circuits.

2.2 Describe the significance of different hardware related problems encountered in
digital circuits.

2.3 Draw the timing diagrams for identified signals in a digital circuit.

3. Application

3.1 Determine the output and performance of given combinational and sequential
circuits.

3.2 Determine the performance of a given digital circuit with regard to an identified
optimization criterion.

4. Analysis

4.1 Compare the performances of combinational and sequential circuits implemented
with SSIs/MSIs and PLDs.

4.2 Determine the function and performance of a given digital circuit.

4.3 Identify the faults in a given circuit and determine the consequences of the same
on the circuit performance.

4.4 Draw conclusions on the behavior of a given digital circuit with regard to
hazards, asynchronous inputs, and output races.

4.5 Determine the appropriateness of the choice of the ICs used in a given digital
circuit.

4.6 Determine the transition sequence of a given state in a state diagram for a given
input sequence.

5. Synthesis

5.1 Generate multiple digital solutions to a verbally described problem.

5.2 Modify a given digital circuit to change its performance as per specifications.

6. Evaluation

6.1 Evaluate the performance of a given digital circuit.

6.2 Assess the performance of a given digital circuit with Moore and Melay
configurations.

6.3 Compare the performance of given digital circuits with respect to their speed,
power consumption, number of ICs, and cost.

Digital Systems: Motivation

A digital circuit is one that is built with devices with two well-defined states. Such circuits

can process information represented in binary form. Systems based on digital circuits touch

all aspects our present day lives. The present day home products including electronic

games and appliances, communication and office automation products, computers with a

wide range of capabilities, and industrial instrumentation and control systems, electro-

medical equipment, and defence and aerospace systems are heavily dependent on digital

circuits. Many fields that emerged later to digital electronics have peaked and levelled off,

but the application of digital concepts appears to be still growing exponentially. This

unprecedented growth is powered by the semiconductor technology, which enables the

introduction of more and complex integrated circuits. The complexity of an integrated

circuit is measured in terms of the number of transistors that can be integrated into a

single unit. The number of transistors in a single integrated circuit has been doubling every

eighteen months (Moore’ Law) for several decades and reached the figure of almost one

billion transistors per chip. This allowed the circuit designers to provide more and more

complex functions in a single unit.

The introduction of programmable integrated circuits in the form of microprocessors in 70s

completely transformed every facet of electronics. While fixed function integrated circuits

and microprocessors coexisted for considerable time, the need to make the equipment

smaller and portable lead to replacement of fixed function devices with programmable

devices. With the all pervasive presence of the microprocessor and the increasing usage of

other programmable circuits like PLDs (Programmable Logic devices), FPGAs (Field

Programmable Gate Arrays) and ASICs (Application Specific Integrated Circuits), the very

nature of digital systems is continuously changing.

The central role of digital circuits in all our professional and personal lives makes it

imperative that every electrical and electronics engineer acquire good knowledge of

relevant basic concepts and ability to work with digital circuits.

At present many of the undergraduate programmes offer two to four courses in the area of

digital systems, with at least two of them being core courses. The course under

consideration constitutes the first course in the area of digital systems. The rate of

obsolescence of knowledge, design methods, and design tools is uncomfortably high. Even

the first level course in digital electronics is not exempt from this obsolescence.

Any course in electronics should enable the students to design circuits to meet some stated

requirements as encountered in real life situations. However, the design approaches should

be based on a sound understanding of the underlying principles. The basic feature of all

design problems is that all of them admit multiple solutions. The selection of the final

solution depends on a variety of criteria that could include the size and cost of the substrate

on which the components are assembled, the cost of components, manufacturability,

reliability, speed etc.

The course contents are designed to enable the students to design digital circuits of

medium level of complexity taking the functional and hardware aspects in an integrated

manner within the context of commercial and manufacturing constraints. However, no

compromises are made with regard to theoretical aspects of the subject.

Learning Objectives

Module 1: Number Systems and Codes (3)

Number systems: Binary, octal, and hexa-decimal number systems, binary

arithmetic. Codes: Binary code, excess-3 code, gray code, error detection and

correction codes.

Recall

1. Describe the format of numbers of different radices?

2. What is parity of a given number?

Comprehension

1. Explain how a number with one radix is converted into a number with another

radix.

2. Summarize the advantages of using different number systems.

3. Interpret the arithmetic operations of binary numbers.

4. Explain the usefulness of different coding schemes.

5. Explain how errors are detected and/or corrected using different codes.

Application

1. Convert a given number from one system to an equivalent number in another

system.

2. Illustrate the construction of a weighted code.

Analysis: Nil

Synthesis: Nil

Evaluation: Nil

Digital Electronics
Module 1: Number Systems and
Codes - Number Systems

N.J. Rao
Indian Institute of Science

id379776 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M1L1 2

Numbers

We use numbers
� to communicate
� to perform tasks
� to quantify
� to measure

� Numbers have become symbols of the present era
� Many consider what is not expressible in terms of

numbers is not worth knowing

December 2006 N.J. Rao M1L1 3

Number Systems in use

Symbolic number system
� uses Roman numerals (I = 1, V = 5, X = 10, L = 50,

C = 100, D = 500 and M = 1000)
� still used in some watches
Weighted position system
� Decimal system is the most commonly used
� Decimal numbers are based on Indian numerals
� Radix used is 10

December 2006 N.J. Rao M1L1 4

Other weighted position systems

� Advent of electronic devices with two states created a
possibility of working with binary numbers

� Binary numbers are most extensively used
� Binary system uses radix 2
� Octal system uses radix 8
� Hexa-decimal system uses radix 16

December 2006 N.J. Rao M1L1 5

Weighted Position Number System

� Value associated with a digit is dependent on its position
� The value of a number is weighted sum of its digits

2357 = 2 x 103 + 3 x 102 + 5 x 101 + 7 x 100

� Decimal point allows negative and positive powers of 10
526.47 = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1

+ 7 x 10-2

� 10 is called the base or radix of the number system

December 2006 N.J. Rao M1L1 6

General positional number system

� Any integer > 2 can serve as the radix
� Digit position �i� has weight ri.
� The general form of a number is

dp-1 dp-2, d1, d0 . d-1d-2 d-n

p digits to the left of the point (radix point) and n digits to
the right of the point

December 2006 N.J. Rao M1L1 7

General positional number system (2)

� The value of the number is

D =

� Leading and trailing zeros have no values
� The values dis can take are limited by the radix value
� A number like (357)5 is incorrect






1p

ni
i

ird

December 2006 N.J. Rao M1L1 8

Binary Number System

� Uses 2 as its radix
� Has only two numerals, 0 and 1
Example:

(N)2 = (11100110)2

� It is an eight digit binary number
� The binary digits are also known as bits
� (N)2 is an 8-bit number

December 2006 N.J. Rao M1L1 9

Binary numbers to Decimal Number

(N)2 = (11100110)2

Its decimal value is given by,
(N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23

+ 1 x 22 + 1 x 21 + 0 x 20

= 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0 = (230)10

December 2006 N.J. Rao M1L1 10

Binary fractional number to
Decimal number

� A binary fractional number (N)2 = 101.101
� Its decimal value is given by

(N)2 = 1 x 22 + 0 x 21 + 1 x 20

+ 1 x 2-1 + 0 x 2-2 + 1 x 2-3

= 4 + 0 + 1 + + 0 +
= 5 + 0.5 + 0.125 = (5.625)10

1
2

1
8

1
8

December 2006 N.J. Rao M1L1 11

Some features of Binary Numbers

� Require very long strings of 1s and 0s
� Some simplification can be done through grouping
� 3-bit groupings: Octal (radix 8) groups three binary digits

Digits will have one of the eight values 0, 1, 2, 3, 4, 5, 6
and 7

� 4-digit groupings: Hexa-decimal (radix 16)
Digits will have one of the sixteen values 0 through 15.
Decimal values from 10 to 15 are designated as A (=10),
B (=11), C (=12), D (=13), E (=14) and F (=15)

December 2006 N.J. Rao M1L1 12

Conversion of binary numbers

Conversion to an octal number
� Group the binary digits into groups of three
� (11011001)2 = (011) (011) (001) = (331)8

� Conversion to an hexa-decimal number
� Group the binary digits into groups of four
� (11011001)2 = (1101) (1001) = (D9)16

December 2006 N.J. Rao M1L1 13

Changing the radix of numbers

� Conversion requires, sometimes, arithmetic operations
� The decimal equivalent value of a number in any radix

D =

Examples
(331)8 = 3 x 82 + 3 x 81 + 1 x 80 = 192 + 24 + 1 = (217)10

(D9)16 = 13 x 161 + 9 x 160 = 208 + 9 = (217)10

(33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2 = (27.69875)10

(E5.A)16 = 14 x 161 + 5 x 160 + 10 x 16-1 = (304.625)10






1p

ni
i

ird

December 2006 N.J. Rao M1L1 14

Conversion of decimal numbers to
numbers with radix r

Represent a number with radix r as
D = ((... ((dn-1).r + dn-2) r +).r + d1).r + d0

To convert a number with radix r to a decimal number
 Divide the right hand side by r
 Remainder: d0

 Quotient: Q = ((... ((dn-1).r + dn-2) r +).r + d1

 Division of Q by r gives d1 as the remainder
 so on

December 2006 N.J. Rao M1L1 15

Example of Conversion

Quotient Remainder

156 ÷ 2 78 0
78 ÷ 2 39 0
39 ÷ 2 19 1
19 ÷ 2 9 1
9 ÷ 2 4 1
4 ÷ 2 2 0
2 ÷ 2 1 0
1 ÷ 2 0 1

(156)10 = (10011100)2

December 2006 N.J. Rao M1L1 16

Example of Conversion

Quotient Remainder
678 ÷ 8 84 6
84 ÷ 8 10 4
10 ÷ 8 1 2
1 ÷ 8 0 1

(678)10 = (1246)8

Quotient Remainder
678 ÷ 16 42 6
42 ÷ 16 2 A
2 ÷ 16 0 2

(678)10 = (2A6)16

December 2006 N.J. Rao M1L1 17

Negative Numbers

Sign-Magnitude representation
 �+� sign before a number indicates it as a positive

number
 �-� sign before a number indicates it as a negative

number
 Not very convenient on computers

� Replace �+� sign by �0� and �-� by �1�
(+1100101)2  (01100101)2

(+101.001)2  (0101.001)2

(-10010)2  (110010)2

(-110.101)2 --. (1110.101)2

December 2006 N.J. Rao M1L1 18

Representing signed numbers

� Diminished Radix Complement (DRC) or
(r-1) - complement

� Radix Complement (RXC) or r-complement
Binary numbers
� DRC is known as �one�s-complement�
� RXC is known as �two�s-complement�
Decimal numbers
� DRC is known as 9�s-complement
� RXC is known as 10�s-complement

December 2006 N.J. Rao M1L1 19

One�s Complement Representation

The most significant bit (MSD) represents the sign
If MSD is a �0�

 The number is positive
 Remaining (n-1) bits directly indicate the magnitude

If the MSD is �1�
 The number is negative
 Complement of all the remaining (n-1) bits gives the

magnitude

December 2006 N.J. Rao M1L1 20

Example: One�s complement

1111001 (1)(111001)

� First (sign) bit is 1: The number is negative
� Ones� Complement of 111001  000110

 (6)10

December 2006 N.J. Rao M1L1 21

Range of n-bit numbers

One�s complement numbers:
0111111 + 63
0000110 --> + 6
0000000 --> + 0
1111111 --> + 0
1111001 --> - 6
1000000 --> - 63

� �0� is represented by 000.....0 and 111.....1
� 7- bit number covers the range from +63 to -63.
� n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1)

December 2006 N.J. Rao M1L1 22

One�s complement of a number

Complement all the digits
� If A is an integer in one�s complement form, then

one�s complement of A = -A
� This applies to fractions as well.

A = 0.101 (+0.625)10

One�s complement of A = 1.010, (-0.625)10

Mixed number
B = 010011.0101 (+19.3125)10

One�s complement of B = 101100.1010 (- 19.3125)10

December 2006 N.J. Rao M1L1 23

Two�s Complement Representation

If MSD is a �0�
 The number is positive
 Remaining (n-1) bits directly indicate the magnitude

If the MSD is �1�
 The number is negative
 Magnitude is obtained by complementing all the

remaining (n-1) bits and adding a 1

December 2006 N.J. Rao M1L1 24

Example: Two�s complement

1111010 (1)(111010)
� First (sign) bit is 1: The number is negative
� Complement 111010 and add 1 000101 + 1

= 000110 = (6)10

December 2006 N.J. Rao M1L1 25

Range of n-bit numbers

Two�s complement numbers:
0111111 + 63
0000110 + 6
0000000 + 0
1111010 - 6
1000001 - 63
1000000 - 64

� �0� is represented by 000.....0
� 7- bit number covers the range from +63 to -64.
� n-bit number has a range from +(2n-1 - 1) to -(2n-1)

December 2006 N.J. Rao M1L1 26

Two�s complement of a number

Complement all the digits and add �1� to the LSB
If A is an integer in one�s complement form, then

 Two�s complement of A = -A
This applies to fractions as well

 A = 0.101 (+0.625)10
 Two�s complement of A = 1.011 (-0.625)10

Mixed number
 B = 010011.0101 (+19.3125)10

 Two�s complement of B = 101100.1011 (- 9.3125)10

Number Systems

We all use numbers to communicate and perform several tasks in our daily lives.

Our present day world is characterized by measurements and numbers associated

with everything. In fact, many consider if we cannot express something in terms of

numbers is not worth knowing. While this is an extreme view that is difficult to

justify, there is no doubt that quantification and measurement, and consequently

usage of numbers, are desirable whenever possible. Manipulation of numbers is one

of the early skills that the present day child is trained to acquire. The present day

technology and the way of life require the usage of several number systems. Usage

of decimal numbers starts very early in one’s life. Therefore, when one is confronted

with number systems other than decimal, some time during the high-school years, it

calls for a fundamental change in one’s framework of thinking.

There have been two types of numbering systems in use through out the world.

One type is symbolic in nature. Most important example of this symbolic numbering

system is the one based on Roman numerals

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500 and M = 1000

IIMVII - 2007

While this system was in use for several centuries in Europe it is completely

superseded by the weighted-position system based on Indian numerals. The Roman

number system is still used in some places like watches and release dates of movies.

The weighted-positional system based on the use of radix 10 is the most commonly

used numbering system in most of the transactions and activities of today’s world.

However, the advent of computers and the convenience of using devices that have

two well defined states brought the binary system, using the radix 2, into extensive

use. The use of binary number system in the field of computers and electronics also

lead to the use of octal (based on radix 8) and hex-decimal system (based on radix

16). The usage of binary numbers at various levels has become so essential that it

is also necessary to have a good understanding of all the binary arithmetic

operations.

Here we explore the weighted-position number systems and conversion from one

system to the other.

Weighted-Position Number System

In a weighted-position numbering system using Indian numerals the value

associated with a digit is dependent on its position. The value of a number is

weighted sum of its digits.

Consider the decimal number 2357. It can be expressed as

 2357 = 2 x 103 + 3 x 102 + 5 x 101 + 7 x 100

Each weight is a power of 10 corresponding to the digit’s position. A decimal point

allows negative as well as positive powers of 10 to be used;

 526.47 = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1 + 7 x 10-2

Here, 10 is called the base or radix of the number system. In a general positional

number system, the radix may be any integer r > 2, and a digit position i has weight

ri. The general form of a number in such a system is

 dp-1 dp-2, d1, d0 . d-1d-2 d-n

where there are p digits to the left of the point (called radix point) and n digits to the

right of the point. The value of the number is the sum of each digit multiplied by the

corresponding power of the radix.

 D = ∑
−

−=

1p

ni
i

ird

Except for possible leading and trailing zeros, the representation of a number in

positional system is unique (00256.230 is the same as 256.23). Obviously the

values di’s can take are limited by the radix value. For example a number like

(356)5, where the suffix 5 represents the radix will be incorrect, as there can not be

a digit like 5 or 6 in a weighted position number system with radix 5.

If the radix point is not shown in the number, then it is assumed to be located near

the last right digit to its immediate right. The symbol used for the radix point is a

point (.). However, a comma is used in some countries. For example 7,6 is used,

instead of 7.6, to represent a number having seven as its integer component and six

as its fractional.

As much of the present day electronic hardware is dependent on devices that work

reliably in two well defined states, a numbering system using 2 as its radix has

become necessary and popular. With the radix value of 2, the binary number system

will have only two numerals, namely 0 and 1.

Consider the number (N)2 = (11100110)2.

It is an eight digit binary number. The binary digits are also known as bits.

Consequently the above number would be referred to as an 8-bit number. Its

decimal value is given by

 (N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20

 = 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0 = (230)10

Consider a binary fractional number (N)2 = 101.101.

Its decimal value is given by

 (N)2 = 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3

 = 4 + 0 + 1 +
1
2 + 0 +

1
8

 = 5 + 0.5 + 0.125 = (5.625)10

From here on we consider any number without its radix specifically mentioned, as a

decimal number.

With the radix value of 2, the binary number system requires very long strings of 1s

and 0s to represent a given number. Some of the problems associated with handling

large strings of binary digits may be eased by grouping them into three digits or four

digits. We can use the following groupings.

 Octal (radix 8 to group three binary digits)

 Hexadecimal (radix 16 to group four binary digits)

In the octal number system the digits will have one of the following eight values 0, 1,

2, 3, 4, 5, 6 and 7.

In the hexadecimal system we have one of the sixteen values 0 through 15.

However, the decimal values from 10 to 15 will be represented by alphabet A (=10),

B (=11), C (=12), D (=13), E (=14) and F (=15).

Conversion of a binary number to an octal number or a hexadecimal number is very

simple, as it requires simple grouping of the binary digits into groups of three or

four. Consider the binary number 11011011. It may be converted into octal or

hexadecimal numbers as

 (11011001)2 = (011) (011) (001) = (331)8

 = (1101) (1001) = (D9)16

Note that adding a leading zero does not alter the value of the number. Similarly for

grouping the digits in the fractional part of a binary number, trailing zeros may be

added without changing the value of the number.

Number System Conversions

In general, conversion between numbers with different radices cannot be done by

simple substitutions. Such conversions would involve arithmetic operations. Let us

work out procedures for converting a number in any radix to radix 10, and vice-

versa. The decimal equivalent value of a number in any radix is given by the

formula

 D = ∑
−

−=

1p

ni
i

ird

where r is the radix of the number and there are p digits to the left of the radix point

and n digits to the right. Decimal value of the number is determined by converting

each digit of the number to its radix-10 equivalent and expanding the formula using

radix-10 arithmetic.

Some examples are:

 (331)8 = 3 x 82 + 3 x 81 + 1 x 80 = 192 + 24 + 1 = (217)10

 (D9)16 = 13 x 161 + 9 x 160 = 208 + 9 = (217)10

 (33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2 = (27.69875)10

 (E5.A)16 = 14 x 161 + 5 x 160 + 10 x 16-1 = (304.625)10

The conversion formula can be rewritten as

 D = ((... ((dn-1).r + dn-2) r +).r + d1).r + d0

This forms the basis for converting a decimal number D to a number with radix r. If

we divide the right hand side of the above formula by r, the remainder will be d0,

and the quotient will be

 Q = ((... ((dn-1).r + dn-2) r +).r + d1

Thus, d0 can be computed as the remainder of the long division of D by the radix r.

As the quotient Q has the same form as D, another long division by r will give d1 as

the remainder. This process can continue to produce all the digits of the number

with radix r. Consider the following examples.

 Quotient Remainder

 156 ÷ 2 78 0

 78 ÷ 2 39 0

 39 ÷ 2 19 1

 19 ÷ 2 9 1

 9 ÷ 2 4 1

 4 ÷ 2 2 0

 2 ÷ 2 1 0

 1 ÷ 2 0 1

 (156)10 = (10011100)2

 Quotient Remainder

 678 ÷ 8 84 6

 84 ÷ 8 10 4

 10 ÷ 8 1 2

 1 ÷ 8 0 1

 (678)10 = (1246)8

 Quotient Remainder

 678 ÷ 16 42 6

 42 ÷ 16 2 A

 2 ÷ 16 0 2

 (678)10 = (2A6)16

Representation of Negative Numbers

In our traditional arithmetic we use the “+” sign before a number to indicate it as a

positive number and a “-” sign to indicate it as a negative number. We usually omit the

sign before the number if it is positive. This method of representation of numbers is

called “sign-magnitude” representation. But using “+” and “-” signs on a computer is

not convenient, and it becomes necessary to have some other convention to represent

the signed numbers. We replace “+” sign with “0” and “-” with “1”. These two symbols

already exist in the binary system. Consider the following examples:

 (+1100101)2 (01100101)2

 (+101.001)2 (0101.001)2

 (-10010)2 (110010)2

 (-110.101)2 (1110.101)2

In the sign-magnitude representation of binary numbers the first digit is always treated

separately. Therefore, in working with the signed binary numbers in sign-magnitude

form the leading zeros should not be ignored. However, the leading zeros can be

ignored after the sign bit is separated. For example,

 1000101.11 = - 101.11

While the sign-magnitude representation of signed numbers appears to be natural

extension of the traditional arithmetic, the arithmetic operations with signed numbers in

this form are not that very convenient, either for implementation on the computer or for

hardware implementation. There are two other methods of representing signed

numbers.

 Diminished Radix Complement (DRC) or (r-1)-complement

 Radix Complement (RX) or r-complement

When the numbers are in binary form

 Diminished Radix Complement will be known as “one’s-complement”

 Radix complement will be known as “two’s-complement”.

If this representation is extended to the decimal numbers they will be known as 9’s-

complement and 10’s-complement respectively.

One’s Complement Representation

Let A be an n-bit signed binary number in one’s complement form.

The most significant bit represents the sign. If it is a “0” the number is positive and if it

is a “1” the number is negative.

The remaining (n-1) bits represent the magnitude, but not necessarily as a simple

weighted number.

Consider the following one’s complement numbers and their decimal equivalents:

 0111111 + 63

 0000110 --> + 6

 0000000 --> + 0

 1111111 --> + 0

 1111001 --> - 6

 1000000 --> - 63

There are two representations of “0”, namely 000.....0 and 111.....1.

From these illustrations we observe

 If the most significant bit (MSD) is zero the remaining (n-1) bits directly indicate

the magnitude.

 If the MSD is 1, the magnitude of the number is obtained by taking the

complement of all the remaining (n-1) bits.

For example consider one’s complement representation of -6 as given above.

 Leaving the first bit ‘1’ for the sign, the remaining bits 111001 do not directly

represent the magnitude of the number -6.

 Take the complement of 111001, which becomes 000110 to determine the

magnitude.

In the example shown above a 7-bit number can cover the range from +63 to -63. In

general an n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1) with two

representations for zero.

The representation also suggests that if A is an integer in one’s complement form, then

 one’s complement of A = -A

One’s complement of a number is obtained by merely complementing all the digits.

This relationship can be extended to fractions as well.

For example if A = 0.101 (+0.625)10, then the one’s complement of A is 1.010, which is

one’s complement representation of (-0.625)10. Similarly consider the case of a mixed

number.

 A = 010011.0101 (+19.3125)10

 One’s complement of A = 101100.1010 (- 19.3125)10

This relationship can be used to determine one’s complement representation of negative

decimal numbers.

Example 1: What is one’s complement binary representation of decimal number -75?

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One

additional bit is needed to represent the sign. Therefore,

 one’s complement representation of 75 = 01001011

 one’s complement representation of -75 = 10110100

Two’s Complement Representation

Let A be an n-bit signed binary number in two’s complement form.

 The most significant bit represents the sign. If it is a “0”, the number is positive,

and if it is “1” the number is negative.

 The remaining (n-1) bits represent the magnitude, but not as a simple weighted

number.

Consider the following two’s complement numbers and their decimal equivalents:

 0111111 + 63

 0000110 + 6

 0000000 + 0

 1111010 - 6

 1000001 - 63

 1000000 - 64

There is only one representation of “0”, namely 000....0.

From these illustrations we observe

If most significant bit (MSD) is zero the remaining (n-1) bits directly indicate the

magnitude.

If the MSD is 1, the magnitude of the number is obtained by taking the complement of

all the remaining (n-1) bits and adding a 1.

Consider the two’s complement representation of -6.

 We assume we are representing it as a 7-bit number.

 Leave the sign bit.

 The remaining bits are 111010. These have to be complemented (that is

000101) and a 1 has to be added (that is 000101 + 1 = 000110 = 6).

In the example shown above a 7-bit number can cover the range from +63 to -64. In

general an n-bit number has a range from + (2n-1 - 1) to - (2n-1) with one representation

for zero.

The representation also suggests that if A is an integer in two’s complement form, then

 Two’s complement of A = -A

Two’s complement of a number is obtained by complementing all the digits and adding

‘1’ to the LSB.

This relationship can be extended to fractions as well.

If A = 0.101 (+0.625)10, then the two’s complement of A is 1.011, which is two’s

complement representation of (-0.625)10.

Similarly consider the case of a mixed number.

 A = 010011.0101 (+19.3125)10

 Two’s complement of A = 101100.1011 (- 19.3125)10

This relationship can be used to determine two’s complement representation of negative

decimal numbers.

Example 2: What is two’s complement binary representation of decimal number -75?

Decimal number 75 requires 7 bits to represent its magnitude in the binary form. One

additional bit is needed to represent the sign. Therefore,

 Two’s complement representation of 75 = 01001011

 Two’s complement representation of -75 = 10110101

M1L1: Number Systems

Multiple Choice Questions

1. Which number system is understood easily by the computer?

(a) Binary (b) Decimal (c) Octal (d) Hexadecimal

2. How many symbols are used in the decimal number system?

(a) 2 (b) 8 (c) 10 (d) 16

3. How are number systems generally classified?

a. Conditional or non conditional

b. Positional or non positional

c. Real or imaginary

d. Literal or numerical

4. What does (10)16 represent in decimal number system?

(a) 10 (b) 0A (c) 16 (d) 15

5. How many bits have to be grouped together to convert the binary number to its

corresponding octal number?

(a) 2 (b) 3 (c) 4 (d) 5

6. Which bit represents the sign bit in a signed number system?

a. Left most bit

b. Right most bit

c. Left centre

d. Right centre

7. The ones complement of 1010 is

(a) 1100 (b) 0101 (c) 0111 (d) 1011

8. How many bits are required to cover the numbers from +63 to -63 in one’s

complement representation?

(a) 6 (b) 7 (c) 8 (d) 9

M1L1: Number Systems

Problems

1. Perform the following number system conversions:

 (a) 101101112 = ?10 (b) 567410 = ?2

 (c) 100111002 = ?8 (d) 24538 = ?2

 (e) 1111000102 = ?16 (f) 6893410 = ?2

 (g) 10101.0012 = ?10 (h) 6FAB716 = ?10

 (i) 11101.1012 = ?8 (j) 5623816 = ?2

2. Convert the following hexadecimal numbers into binary and octal numbers

 (a) 78AD (b) DA643 (c) EDC8

 (d) 3245 (e) 68912 (f) AF4D

3. Convert the following octal numbers into binary and hexadecimal numbers

 (a) 7643 (b) 2643 (c) 1034

 (d) 3245 (e) 6712 (f) 7512

4. Convert the following numbers into binary:

 (a) 123610 (b) 234910 (c) 345.27510

 (d) 45678 (e) 45.658 (f) 145.238

 (g) ADF516 (h) AD.F316 (i) 12.DA16

5. What is the range of unsigned decimal values that can be represented by 8 bits?

6. What is the range of signed decimal values that can be represented by 8 bits?

7. How many bits are required to represent decimal values ranging from 75 to -75?

8. Represent each of the following values as a 6-bit signed binary number in one’s
complement and two’s complement forms.

 (a) 28 (b) -21 (c) -5 (d) -13

9. Determine the decimal equivalent of two’s complement numbers given below:

 (a) 1010101 (b) 0111011 (c) 11100010

Digital Electronics
Module 1:Number Systems and
Codes - Codes

N.J. Rao
Indian Institute of Science

id2733069 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M1L2 2

Need for Coding

Information sent over a noisy channel is likely to be
distorted

Information is coded to facilitate
 Efficient transmission
 Error detection
 Error correction

December 2006 N.J. Rao M1L2 3

Coding

� Coding is the process of altering the characteristics of
information to make it more suitable for intended
application

� Coding schemes depend on
 Security requirements
 Complexity of the medium of transmission
 Levels of error tolerated
 Need for standardization

December 2006 N.J. Rao M1L2 4

Decoding

� Decoding is the process of reconstructing source
information from the received encoded information

� Decoding can be more complex than coding if there is no
prior knowledge of coding schemes

December 2006 N.J. Rao M1L2 5

Bit combinations

Bit - a binary digit 0 or 1

Nibble - a group of four bits
Byte - a group of eight bits
Word - a group of sixteen bits;

(Sometimes used to designate 32 bit or 64 bit
groups of bits)

December 2006 N.J. Rao M1L2 6

Binary coding

Assign each item of information a unique combination of 1s
and 0s
 n is the number of bits in the code word
 x be the number of unique words

If n = 1, then x = 2 (0, 1)
n = 2, then x = 4 (00, 01, 10, 11)
n = 3, then x = 8 (000,001,010 ...111)
n = j, then x = 2j

December 2006 N.J. Rao M1L2 7

Number of bits in a code word

x: number of elements to be coded binary coded format
x < 2j

or j > log2x
> 3.32 log10x

j is the number of bits in a code word.

December 2006 N.J. Rao M1L2 8

Example: Coding of alphanumeric
information

� Alphanumeric information: 26 alphabetic characters + 10
decimals digits = 36 elements

j > 3.32 log1036
j > 5.16 bits

� Number of bits required for coding = 6
� Only 36 code words are used out of the 64 possible code

words

December 2006 N.J. Rao M1L2 9

Some codes for consideration

� Binary coded decimal codes
� Unit distance codes
� Error detection codes
� Alphanumeric codes

December 2006 N.J. Rao M1L2 10

Binary coded decimal codes

Simple Scheme
� Convert decimal number inputs into binary form
� Manipulate these binary numbers
� Convert resultant binary numbers back into decimal

numbers
However, it
� requires more hardware
� slows down the system

December 2006 N.J. Rao M1L2 11

Binary coded decimal codes

� Encode each decimal symbol in a unique string of 0s
and 1s

� Ten symbols require at least four bits to encode
� There are sixteen four-bit groups to select ten groups.
� There can be 30 x 1010 (16C10.10!) possible codes
� Most of these codes will not have any special properties

December 2006 N.J. Rao M1L2 12

Example of a BCD code

� Natural Binary Coded Decimal code (NBCD)
� Consider the number (16.85)10

(16.85)10 = (0001 0110 . 1000 0101) NBCD
1 6 8 5

� NBCD code is used in calculators

December 2006 N.J. Rao M1L2 13

How do we select a coding scheme?

It should have some desirable properties
� ease of coding
� ease in arithmetic operations
� minimum use of hardware
� error detection property
� ability to prevent wrong output during transitions

December 2006 N.J. Rao M1L2 14

Weighted Binary Coding

Decimal number (A)10

Encoded in the binary form as �a3 a2 a1 a0�
w3, w2, w1 and w0 are the weights selected for a given
code

(A)10 = w3a3 + w2a2 + w1a1 +w0a0
The more popularly used codes have these weights as

w3 w2 w1 w0
8 4 2 1
2 4 2 1
8 4 -2 -1

December 2006 N.J. Rao M1L2 15

Binary codes for decimal numbers

1 1 1 11 1 1 11 0 0 19

1 0 0 01 1 1 01 0 0 08

1 0 0 11 1 0 10 1 1 17

1 0 1 01 1 0 00 1 1 06

1 0 1 11 0 1 10 1 0 15

0 1 0 00 1 0 0 0 1 0 04

0 1 0 10 0 1 10 0 1 13

0 1 1 00 0 1 00 0 1 02

0 1 1 10 0 0 10 0 0 11

0 0 0 0 0 0 0 00 0 0 00

Weights
8 4 -2 -1

Weights
2 4 2 1

Weight
8 4 2 1

Decimal digit

December 2006 N.J. Rao M1L2 16

Binary coded decimal numbers

� The unused six combinations are illegal
� They may be utilised for error detection purposes.
� Choice of weights in a BCD codes

1. Self-complementing codes
2. Reflective codes

December 2006 N.J. Rao M1L2 17

Self complementing codes

Logical complement of a coded number is also its
arithmetic complement

Example: 2421 code
Nine�s complement of (4)10 = (5)10

2421 code of (4)10 = 0100
Complement 0f 0100 = 1011 = 2421 code for (5)10

= (9 - 4)10.
A necessary condition: Sum of its weights should be 9.

December 2006 N.J. Rao M1L2 18

Other self complementing codes

Excess-3 code (not weighted)
Add 0011 (3) to all the 8421 coded numbers

Another example is 631-1 weighted code

December 2006 N.J. Rao M1L2 19

Examples of self-complementary codes

1111110011009

1110110110118

1101101010107

1100100010016

1011100110005

0100011001114

0011011101103

0010010101012

0001001001001

0000001100110

2421
Code

631-1
Code

Excess-3
Code

Decimal
Digit

December 2006 N.J. Rao M1L2 20

Reflective code

� Imaged about the centre entries with one bit changed
Example
� 9�s complement of a reflected BCD code word is formed

by changing only one of its bits

December 2006 N.J. Rao M1L2 21

Examples of reflective BCD codes

010110009

101110018

100110107

111110116

000111005

000001004

111000113

100000102

101000011

010000000

Code-BCode-ADecimal
Digit

December 2006 N.J. Rao M1L2 22

Unit Distance Codes

Adjacent codes differ only in one bit

� �Gray code� is the most popular example
� Some of the Gray codes have also the reflective

properties

December 2006 N.J. Rao M1L2 23

3-bit and 4-bit Gray codes

1101-9

1100-8

01001007

01011016

01111115

01101104

00100103

00110112

00010011

00000000

4-bit Gray
Code

3-bit Gray
Code

Decimal
Digit

1000-15

1001-14

1011-13

1010-12

1110-11

1111-10

4-bit Gray
Code

3-bit Gray
Code

Decimal
Digit

December 2006 N.J. Rao M1L2 24

More examples of Unit Distance Codes

0010010000019

1010110000118

1011110101117

1111111111116

0111111010115

0011011010014

0001001010003

1001001111002

1000000101001

0000000000000

UDC-3UDC-2UDC-1Decimal
Digit

December 2006 N.J. Rao M1L2 25

3-bit simple binary coded shaft encoder

000111

110

101

100 011

010

001

0 0 1

Can lead to errors (001  011  010)

December 2006 N.J. Rao M1L2 26

Shaft encoder disk using 3-bit Gray code

 000 100

101

111

110 010

011

001

0 0 1

December 2006 N.J. Rao M1L2 27

Constructing Gray Code

� The bits of Gray code words are numbered from right to
left, from 0 to n-1.

� Bit i is 0 if bits i and i+1 of the corresponding binary code
word are the same, else bit i is 1

� When i+1 = n, bit n of the binary code word is considered
to be 0

Example: Consider the decimal number 68.
(68)10 = (1000100)2

Binary code : 1 0 0 0 1 0 0
Gray code : 1 1 0 0 1 1 0

December 2006 N.J. Rao M1L2 28

Convert a Gray coded number to a
straight binary number

� Scan the Gray code word from left to right
� All the bits of the binary code are the same as those of

the Gray code until the first 1 is encountered, including
the first 1

� 1�s are written until the next 1 is encountered, in which
case a 0 is written.

� 0�s are written until the next 1 is encountered, in which
case a 1 is written.

Examples
Gray code : 1 1 0 1 1 0
Binary code: 1 0 0 1 0 0
Gray code : 1 0 0 0 1 0 1 1
Binary code: 1 1 1 1 0 0 1 0

December 2006 N.J. Rao M1L2 29

Alphanumeric Code (ASCII)

DELo-O?/USSI1111

~nN>.RSSO0111

}m]M=-GSCR1011

|l\L<,FSFF0011

{k[K;+ESCVT1101

zjZJ:*SUBLF0101

yiYI9)EMHT1001

xhXH8(CANBS0001

wgWG7,ETBBEL1110

vfVF6&SYNACK0110

ueUE5%NAKENQ1010

tdTD4$DC4EOT0010

scSC3#DC3ETX1100

rbRB2�DC2STX0100

qaQA1!DC1SOH1000

p�P@0SPDLENUL0000

111110101100011010001000

b7 b6 b5b1b2b3b4

December 2006 N.J. Rao M1L2 30

Other alphanumeric codes

� EBCDIC (Extended Binary Coded Decimal Interchange
Code)

� 12-bit Hollerith code
are in use for some applications

December 2006 N.J. Rao M1L2 31

Error Detection and Correction

� Error rate cannot be reduced to zero
� We need a mechanism of correcting the errors that occur
� It is not always possible or may prove to be expensive
� It is necessary to know if an error occurred
� If an occurrence of error is known, data may be

retransmitted
� Data integrity is improved by encoding
� Encoding may be done for error correction or merely for

error detection.

December 2006 N.J. Rao M1L2 32

Encoding for data integrity

� Add a special code bit to a data word
� It is called the �Parity Bit�
� Parity bit can be added on an �odd� or �even� basis

December 2006 N.J. Rao M1L2 33

Parity

Odd Parity
� The number of 1�s, including the parity bit, should be odd

Example: S in ASCII code is
(S) = (1010011)ASCII

S, when coded for odd parity, would be shown as
(S) = (11010011)ASCII with odd parity

Even Parity
� The number of 1�s, including the parity bit, should be even

When S is encoded for even parity
(S) = (01010011) ASCII with even parity

December 2006 N.J. Rao M1L2 34

Error detection with parity bits

� If odd number of 1�s occur in the received data word
coded for even parity then an error occurred

� Single or odd number bit errors can be detected
� Two or even number bit errors will not be detected

December 2006 N.J. Rao M1L2 35

Error Correction

� Parity bit allows us only to detect the presence of one bit
error in a group of bits

� It does not enable us to exactly locate the bit that
changed

� Parity bit scheme can be extended to locate the faulty bit
in a block of information

December 2006 N.J. Rao M1L2 36

Single error detecting and single error
correcting coding scheme

Column parity bits

Row

Parity

bits
Information bits

The bits are conceptually arranged in a two-dimensional
array, and parity bits are provided to check both the rows
and the columns

December 2006 N.J. Rao M1L2 37

Parity-check block codes
Detect and correct more than one-bit errors
These are known as (n, k) codes
� They have r (= n - k) parity check bits, formed by linear

operations on the k data bits
� R bits are appended to each block of k bits to generate an

n-bit code word
A (15, 11) code has r = 4 parity-check bits for every 11 data
bits

� As r increases it should be possible to correct more and
more errors

� With r = 1 error correction is not possible
� Long codes with a relatively large number of parity-check

bits should provide better performance.

December 2006 N.J. Rao M1L2 38

Single-error correcting code

(7, 3) code
Data bits Code words

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1 1
0 1 0 0 1 0 0 1 1 0
0 1 1 0 1 1 1 0 0 1
1 0 0 1 0 0 1 1 0 0
1 0 1 1 0 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 0 1 0 1

� Code words differ in at least three positions.
� Any one error is correctable since the resultant code word will still be

closer to the correct one

December 2006 N.J. Rao M1L2 39

Hamming distance

� Difference in the number of positions between any two
code words

� For two errors to be correctable, the Hamming distance
d should be at least 5

� For t errors correctable, d > 2t+1 or t = [(d -1)/2]
[] refers to the integer less than or equal to x.

December 2006 N.J. Rao M1L2 40

Codes with different properties

Codes exit for
� correcting independently occurring errors
� correcting burst errors
� providing relatively error-free synchronization of binary

data
� etc.
Coding Theory is very important to communication systems.
It is a discipline by itself.

CODES: Introduction

When we wish to send information over long distances unambiguously it becomes

necessary to modify (encoding) the information into some form before sending, and

convert (decode) at the receiving end to get back the original information. This

process of encoding and decoding is necessary because the channel through which

the information is sent may distort the transmitted information. Much of the

information is sent as numbers. While these numbers are created using simple

weighted-positional numbering systems, they need to be encoded before

transmission. The modifications to numbers were based on changing the weights,

but predominantly on some form of binary encoding. There are several codes in use

in the context of present day information technology, and more and more new codes

are being generated to meet the new demands.

Coding is the process of altering the characteristics of information to make

it more suitable for intended application

By assigning each item of information a unique combination of 1s and 0s we

transform some given information into binary coded form. The bit combinations are

referred to as “words” or “code words”. In the field of digital systems and computers

different bit combinations have different designations.

 Bit - a binary digit 0 or 1

 Nibble - a group of four bits

 Byte - a group of eight bits

 Word - a group of sixteen bits;

 a word has two bytes or four nibbles

Sometimes ‘word’ is used to designate a larger group of bits also, for example 32 bit

or 64 bit words.

We need and use coding of information for a variety of reasons

 to increase efficiency of transmission,

 to make it error free,

 to enable us to correct it if errors occurred,

 to inform the sender if an error occurred in the received information etc.

 for security reasons to limit the accessibility of information

 to standardise a universal code that can be used by all

Coding schemes have to be designed to suit the security requirements and the

complexity of the medium over which information is transmitted.

Decoding is the process of reconstructing source information from the

encoded information. Decoding process can be more complex than coding if we

do not have prior knowledge of coding schemes.

In view of the modern day requirements of efficient, error free and secure

information transmission coding theory is an extremely important subject. However,

at this stage of learning digital systems we confine ourselves to familiarising with a

few commonly used codes and their properties.

We will be mainly concerned with binary codes. In binary coding we use binary digits

or bits (0 and 1) to code the elements of an information set. Let n be the number of

bits in the code word and x be the number of unique words.

 If n = 1, then x = 2 (0, 1)

 n = 2, then x = 4 (00, 01, 10, 11)

 n = 3, then x = 8 (000,001,010 ...111)

 .

 n = j, then x = 2j

From this we can conclude that if we are given elements of information to code into

binary coded format,

 x < 2j

 or j > log2x

 > 3.32 log10x

where j is the number of bits in a code word.

For example, if we want to code alphanumeric information (26 alphabetic characters

+ 10 decimals digits = 36 elements of information), we require

 j > 3.32 log1036

 j > 5.16 bits

Since bits are not defined as fractional parts, we take j = 6. In other words a

minimum six-bit code would be required to code 36 alphanumeric elements of

information. However, with a six-bit code only 36 code words are used out of the 64

code words possible.

In this Learning Unit we consider a few commonly used codes including

1. Binary coded decimal codes

2. Unit distance codes

3. Error detection codes

4. Alphanumeric codes

Binary Coded Decimal Codes

The main motivation for binary number system is that there are only two elements in

the binary set, namely 0 and 1. While it is advantageous to perform all

computations on hardware in binary forms, human beings still prefer to work with

decimal numbers. Any electronic system should then be able to accept decimal

numbers, and make its output available in the decimal form.

One method, therefore, would be to

 convert decimal number inputs into binary form

 manipulate these binary numbers as per the required functions, and

 convert the resultant binary numbers into the decimal form

However, this kind of conversion requires more hardware, and in some cases

considerably slows down the system. Faster systems can afford the additional

circuitry, but the delays associated with the conversions would not be acceptable. In

case of smaller systems, the speed may not be the main criterion, but the additional

circuitry may make the system more expensive.

We can solve this problem by encoding decimal numbers as binary strings, and use

them for subsequent manipulations.

There are ten different symbols in the decimal number system: 0, 1, 2, . . ., 9. As

there are ten symbols we require at least four bits to represent them in the binary

form. Such a representation of decimal numbers is called binary coding of decimal

numbers.

As four bits are required to encode one decimal digit, there are sixteen four-bit

groups to select ten groups. This would lead to nearly 30 x 1010 (16C10.10!) possible

codes. However, most of them will not have any special properties that would be

useful in hardware design. We wish to choose codes that have some desirable

properties like

 ease of coding

 ease in arithmetic operations

 minimum use of hardware

 error detection property

 ability to prevent wrong output during transitions

In a weighted code the decimal value of a code is the algebraic sum of the weights

of 1s appearing in the number. Let (A)10 be a decimal number encoded in the binary

form as a3a2a1a0. Then

 (A)10 = w3a3 + w2a2 + w1a1 +w0a0

where w3, w2, w1 and w0 are the weights selected for a given code, and a3,a2,a1and

a0 are either 0s or 1s. The more popularly used codes have the weights as

 w3 w2 w1 w0

 8 4 2 1

 2 4 2 1

 8 4 -2 -1

The decimal numbers in these three codes are

Decimal
digit

Weights
8 4 2 1

Weights
2 4 2 1

Weights
8 4 -2 -1

0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 1 1 1
2 0 0 1 0 0 0 1 0 0 1 1 0
3 0 0 1 1 0 0 1 1 0 1 0 1
4 0 1 0 0 0 1 0 0 0 1 0 0
5 0 1 0 1 1 0 1 1 1 0 1 1
6 0 1 1 0 1 1 0 0 1 0 1 0
7 0 1 1 1 1 1 0 1 1 0 0 1
8 1 0 0 0 1 1 1 0 1 0 0 0
9 1 0 0 1 1 1 1 1 1 1 1 1

In all the cases only ten combinations are utilized to represent the decimal digits.

The remaining six combinations are illegal. However, they may be utilized for error

detection purposes.

Consider, for example, the representation of the decimal number 16.85 in Natural

Binary Coded Decimal code (NBCD)

 (16.85)10 = (0001 0110 . 1000 0101)NBCD

 1 6 8 5

There are many possible weights to write a number in BCD code. Some codes have

desirable properties, which make them suitable for specific applications. Two such

desirable properties are:

 1. Self-complementing codes

 2. Reflective codes

When we perform arithmetic operations, it is often required to take the

“complement” of a given number. If the logical complement of a coded number is

also its arithmetic complement, it will be convenient from hardware point of view. In

a self-complementing coded decimal number, (A)10, if the individual bits of a

number are complemented it will result in (9 - A)10.

Example: Consider the 2421 code.

 The 2421 code of (4)10 is 0100.

 Its complement is 1011 which is 2421 code for (5)10 = (9 - 4)10.

Therefore, 2421 code may be considered as a self-complementing code. A necessary

condition for a self-complimenting code is that the sum of its weights should be 9.

A self-complementing code, which is not weighted, is excess-3 code. It is derived

from 8421 code by adding 0011 to all the 8421 coded numbers.

Another self-complementing code is 631-1 weighted code.

Three self-complementing codes are

Decimal
Digit

Excess-3
Code

631-1
Code

2421
Code

0 0011 0011 0000

1 0100 0010 0001

2 0101 0101 0010

3 0110 0111 0011

4 0111 0110 0100

5 1000 1001 1011

6 1001 1000 1100

7 1010 1010 1101

8 1011 1101 1110

9 1100 1100 1111

A reflective code is characterized by the fact that it is imaged about the centre

entries with one bit changed. For example, the 9’s complement of a reflected BCD

code word is formed by changing only one its bits. Two such examples of reflective

BCD codes are

Decimal Code-A Code-B
0 0000 0100
1 0001 1010
2 0010 1000
3 0011 1110
4 0100 0000
5 1100 0001
6 1011 1111
7 1010 1001
8 1001 1011
9 1000 0101

The BCD codes are widely used and the reader should become familiar with reasons

for using them and their application. The most common application of NBCD codes is

in the calculator.

Unit Distance Codes

There are many applications in which it is desirable to have a code in which the

adjacent codes differ only in one bit. Such codes are called Unit distance Codes.

“Gray code” is the most popular example of unit distance code. The 3-bit and 4-bit

Gray codes are

Decimal 3-bit Gray 4-bit Gray
0 000 0000
1 001 0001
2 011 0011
3 010 0010
4 110 0110
5 111 0111
6 101 0101
7 100 0100
8 - 1100
9 - 1101
10 - 1111
11 - 1110
12 - 1010
13 - 1011
14 - 1001
15 - 1000

These Gray codes listed here have also the reflective properties. Some additional

examples of unit distance codes are

Decimal
Digit

UDC-1 UDC-2

UDC-3

0 0000 0000 0000
1 0100 0001 1000
2 1100 0011 1001
3 1000 0010 0001

4 1001 0110 0011
5 1011 1110 0111
6 1111 1111 1111
7 0111 1101 1011
8 0011 1100 1010
9 0001 0100 0010

The most popular use of Gray codes is in the position sensing transducer known as

shaft encoder. A shaft encoder consists of a disk in which concentric circles have

alternate sectors with reflective surfaces while the other sectors have non-reflective

surfaces. The position is sensed by the reflected light from a light emitting diode.

However, there is choice in arranging the reflective and non-reflective sectors. A 3-

bit binary coded disk will be as shown in the figure 1.

FIG.1: 3-bit binary coded shaft encoder

From this figure we see that straight binary code can lead to errors because of

mechanical imperfections. When the code is transiting from 001 to 010, a slight

misalignment can cause a transient code of 011 to appear. The electronic circuitry

associated with the encoder will receive 001 --> 011 -> 010. If the disk is patterned

to give Gray code output, the possibilities of wrong transient codes will not arise.

This is because the adjacent codes will differ in only one bit. For example the

adjacent code for 001 is 011. Even if there is a mechanical imperfection, the

transient code will be either 001 or 011. The shaft encoder using 3-bit Gray code is

shown in the figure 2.

 000100

101

111

110 010

011

001

0 0 1

FIG. 2: Shaft encoder disk using a 3-bit Gray code

There are two convenient methods to construct Gray code with any number of

desired bits. The first method is based on the fact that Gray code is also a reflective

code. The following rule may be used to construct Gray code:

 A one-bit Gray code had code words, 0 and 1

000111

110

101

100 011

010

001

0 0 1

 The first 2n code words of an (n+1)-bit Gray code equal the code words of an

n-bit Gray code, written in order with a leading 0 appended.

 The last 2n code words of a (n+1)-bit Gray code equal the code words of an

n-bit Gray code, written in reverse order with a leading 1 appended.

However, this method requires Gray codes with all bit lengths less than ‘n’ also be

generated as a part of generating n-bit Gray code. The second method allows us to

derive an n-bit Gray code word directly from the corresponding n-bit binary code

word:

 The bits of an n-bit binary code or Gray code words are numbered from right

to left, from 0 to n-1.

 Bit i of a Gray-code word is 0 if bits i and i+1 of the corresponding binary

code word are the same, else bit i is 1. When i+1 = n, bit n of the binary

code word is considered to be 0.

Example: Consider the decimal number 68.

 (68)10 = (1000100)2

 Binary code: 1 0 0 0 1 0 0

 Gray code : 1 1 0 0 1 1 0

The following rules can be followed to convert a Gray coded number to a straight

binary number:

 Scan the Gray code word from left to right. All the bits of the binary code are

the same as those of the Gray code until the first 1 is encountered, including

the first 1.

 1’s are written until the next 1 is encountered, in which case a 0 is

written.

 0’s are written until the next 1 is encountered, in which case a 1 is written.

Consider the following examples of Gray code numbers converted to binary numbers

 Gray code : 1 1 0 1 1 0 1 0 0 0 1 0 1 1

 Binary code: 1 0 0 1 0 0 1 1 1 1 0 0 1 0

Alphanumeric Codes

When information to be encoded includes entities other than numerical values, an

expanded code is required. For example, alphabetic characters (A, B,Z) and

special operation symbols like +, -, /, *, (,) and other special symbols are used in

digital systems. Codes that include alphabetic characters are commonly referred to

as Alphanumeric Codes. However, we require adequate number of bits to encode all

the characters. As there was a need for alphanumeric codes in a wide variety of

applications in the early era of computers, like teletype, punched tape and punched

cards, there has always been a need for evolving a standard for these codes.

Alphanumeric keyboard has become ubiquitous with the popularization of personal

computers and notebook computers. These keyboards use ASCII (American

Standard Code for Information Interchange) code

b4 b3 b2 b1 b7 b6 b5
 000 001 010 011 100 101 110 111
0 0 0 0 NUL DLE SP 0 @ P ‘ p
0 0 0 1 SOH DC1 ! 1 A Q a q
0 0 1 0 STX DC2 “ 2 B R b r
0 0 1 1 ETX DC3 # 3 C S c s
0 1 0 0 EOT DC4 $ 4 D T d t
0 1 0 1 ENQ NAK % 5 E U e u
0 1 1 0 ACK SYN & 6 F V f v
0 1 1 1 BEL ETB , 7 G W g w
1 0 0 0 BS CAN (8 H X h x
1 0 0 1 HT EM) 9 I Y i y
1 0 1 0 LF SUB * : J Z j z
1 0 1 1 VT ESC + ; K [k {
1 1 0 0 FF FS , < L \ l |
1 1 0 1 CR GS - = M] m }
1 1 1 0 SO RS . > N � n ~
1 1 1 1 SI US / ? O - o DEL

Alphanumeric codes like EBCDIC (Extended Binary Coded Decimal Interchange Code)

and 12-bit Hollerith code are in use for some applications. However, ASCII code is

now the standard code for most data communication networks. Therefore, the

reader is urged to become familiar with the ASCII code.

Error Detection and Correcting Codes

When data is transmitted in digital form from one place to another through a

transmission channel/medium, some data bits may be lost or modified. This loss of

data integrity occurs due to a variety of electrical phenomena in the transmission

channel. As there are needs to transmit millions of bits per second, the data

integrity should be very high. The error rate cannot be reduced to zero. Then we

would like to ideally have a mechanism of correcting the errors that occur. If this is

not possible or proves to be expensive, we would like to know if an error occurred.

If an occurrence of error is known, appropriate action, like retransmitting the data,

can be taken. One of the methods of improving data integrity is to encode the data

in a suitable manner. This encoding may be done for error correction or merely for

error detection.

A simple process of adding a special code bit to a data word can improve its

integrity. This extra bit will allow detection of a single error in a given code word in

which it is used, and is called the ‘Parity Bit’. This parity bit can be added on an odd

or even basis. The odd or even designation of a code word may be determined by

actual number of 1’s in the data (including the added parity bit) to which the parity

bit is added. For example, the S in ASCII code is

 (S) = (1010011)ASCII

S, when coded for odd parity, would be shown as

 (S) = (11010011)ASCII with odd parity

In this encoded ‘S’ the number of 1’s is five, which is odd.

When S is encoded for even parity

 (S) = (01010011)ASCII with even parity.

In this case the coded word has even number (four) of ones.

Thus the parity encoding scheme is a simple one and requires only one extra bit. If

the system is using even parity and we find odd number of ones in the received data

word we know that an error has occurred. However, this scheme is meaningful only

for single errors. If two bits in a data word were received incorrectly the parity bit

scheme will not detect the faults. Then the question arises as to the level of

improvement in the data integrity if occurrence of only one bit error is detectable.

The improvement in the reliability can be mathematically determined.

Adding a parity bit allows us only to detect the presence of one bit error in a group of

bits. But it does not enable us to exactly locate the bit that changed. Therefore,

addition of one parity bit may be called an error detecting coding scheme. In a

digital system detection of error alone is not sufficient. It has to be corrected as

well. Parity bit scheme can be extended to locate the faulty bit in a block of

information. The information bits are conceptually arranged in a two-dimensional

array, and parity bits are provided to check both the rows and the columns.

If we can identify the code word that has an error with the parity bit, and the column

in which that error occurs by a way of change in the column parity bit, we can both

detect and correct the wrong bit of information. Hence such a scheme is single error

detecting and single error correcting coding scheme.

This method of using parity bits can be generalized for detecting and correcting more

than one-bit error. Such codes are called parity-check block codes. In this class

known as (n, k) codes, r (= n-k) parity check bits, formed by linear operations on

the k data bits, are appended to each block of k bits to generate an n-bit code word.

An encoder outputs a unique n-bit code word for each of the 2k possible input k-bit

blocks. For example a (15, 11) code has r = 4 parity-check bits for every 11 data

bits. As r increases it should be possible to correct more and more errors.

With r = 1 error correction is not possible, as such a code will only detect an odd

number of errors.

It can also be established that as k increases the overall probability of error should

also decrease. Long codes with a relatively large number of parity-check bits should

thus provide better performance. Consider the case of (7, 3) code

 Data bits Code words

 0 0 0 0 0 0 0 0 0 0

 0 0 1 0 0 1 1 1 1 1

 0 1 0 0 1 0 0 1 1 0

 0 1 1 0 1 1 1 0 0 1

 1 0 0 1 0 0 1 1 0 0

 1 0 1 1 0 1 0 0 1 1

 1 1 0 1 1 0 1 0 1 0

 1 1 1 1 1 1 0 1 0 1

A close look at these indicates that they differ in at least three positions. Any one

error should then be correctable since the resultant code word will still be closer to

the correct one, in the sense of the number of bit positions in which they agree, than

to any other. This is an example of single-error-correcting-code. The difference in

the number of positions between any two code words is called the Hamming

distance, named after R.W.Hamming who, in 1950, described a general method for

constructing codes with a minimum distance of 3. The Hamming distance plays a

key role in assessing the error-correcting capability of codes. For two errors to be

correctable, the Hamming distance d should be at least 5. In general, for t errors to

be correctable, d > 2t+1 or t = [(d-1)/2], where the [x] notation refers to the

integer less than or equal to x.

Innumerable varieties of codes exist, with different properties. There are various

types of codes for correcting independently occurring errors, for correcting burst

errors, for providing relatively error-free synchronization of binary data etc. The

theory of these codes, methods of generating the codes and decoding the coded

data, is a very important subject of communication systems, and need to be studied

as a separate discipline.

Problems

M1L2: Codes

1. Write the following decimal number in Excess-3, 2421, 84-2-2 BCD codes:

 (a) 563 (b) 678 (c) 1465

2. What is the use of self-complementing property? Demonstrate 631-1 BCD code is

self-complementary.

3. Develop two different 4-bit unit distance codes.

4. Prove that Gray code is both a reflective and unit distance code?

5. Determine the Gray code for (a) 3710 and (b) 9710.

6. Write your address in ASCII code.

7. Write 8-bit ASCII code sequence of the name of your town/city with even parity.

8. (a) Write the following statements in ASCII

 A = 4.5 x B

 X = 75/Y

 (b) Attach an even parity bit to each code word of the ASCII strings written for the
above statements

9. Find and correct the error in the following code sequence

 0 1 0 1 0
 0 1 1 0 0
 1 1 0 1 1
 1 0 1 1 0
 1 0 0 0 1
 0 0 0 1 1
 1 1 0 0 0
 0 1 0 0 1
 0 1 0 1 0 --- Parity word

 |__________ Parity bit

Digital Electronics
Module 2: Boolean Algebra and
Boolean Operators: Boolean Algebra

N.J. Rao
Indian Institute of Science

id3639923 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M2L1 2

Switching Signals

We encounter situations where the choice is binary
Move -Stop
On - Off
Yes - No

� An intended action takes place or does not take place
� Signals with two possible states are called �switching

signals�
� We need to work with a large number of such signals
� There is a need for formal methods of handling such

signals

December 2006 N.J. Rao M2L1 3

Examples of switching signals

A control circuit for an electric bulb

Four switches control the operation of the bulb
`the bulb is switched on if the switches S1 and S2 are

closed, and S3 or S4 is also closed, otherwise the bulb will
not be switched on'
Relay operations in telephone exchanges is another example

December 2006 N.J. Rao M2L1 4

George Boole

English mathematician (1854)
Wrote �An Investigation of the Laws of Thought�
Examined the truth or falsehood of language statements
Used special algebra of logic - Boole's Algebra (Boolean

Algebra)
� assigned a value 1 to statements that are completely correct
� assigned a value 0 to statements that are completely false
Statements are referred to digital variables
We consider logical or digital variables to be synonymous

December 2006 N.J. Rao M2L1 5

Claude Shannon

Master�s Thesis at Massachusetts Institute of Technology
in 1938
�A Symbolic Analysis of Relay and Switching Circuits�

� He applied Boolean algebra to the analysis and design
of electrical switching circuits

December 2006 N.J. Rao M2L1 6

Realisation of switching circuits

Bipolar and MOS transistors are used as switches in
building integrated circuits

Need to understand the electrical aspects of these circuits

December 2006 N.J. Rao M2L1 7

Learning Objectives

� To know the basic axioms of Boolean algebra

� To simplify logic functions (Boolean functions)
using the basic properties of Boolean Algebra

December 2006 N.J. Rao M2L1 8

Boolean Algebra

A Boolean algebra consists of
 a finite set BS
 subject to equivalence relation "="
 one unary operator �not� (symbolised by an over bar)
 two binary operators "+" and "."

such that for every element x and y  BS, the operations
(not x), x + y and x . y are uniquely definedx

December 2006 N.J. Rao M2L1 9

Boolean Algebra (2)

� The unary operator �not� is defined by the relation

� The not operator is also called the complement
is the complement of xx

10;01 

December 2006 N.J. Rao M2L1 10

Binary operator �and�

The �and� operator is defined by

0 . 0 = 0

0 . 1 = 0
1 . 0 = 0

1 . 1 = 1

December 2006 N.J. Rao M2L1 11

Binary operator �or�

The �or� operator is defined by

0 + 0 = 0
0 + 1 = 1

1 + 0 = 1
1 + 1 = 1

December 2006 N.J. Rao M2L1 12

Huntington's (1909) postulates

P1. The operations are closed

For all x and y  BS,
� x + y  BS
� x . y  BS

P2. For each operation there exists an identity element.

� There exists an element 0  BS such that for all
x  BS, x + 0 = x
� There exists an element 1  BS such that for all

x  BS, x . 1 = x

December 2006 N.J. Rao M2L1 13

Huntington's postulates (2)

P3. The operations are commutative

For all x and y  BS,
� x + y = y + x
� x . y = y . x

P4. The operations are distributive

For all x, y and z  BS,
� x + (y . z) = (x + y) . (x + z)
� x . (y + z) = (x . y) + (x . z)

December 2006 N.J. Rao M2L1 14

Huntington's postulates (3)

P5. For every element x  BS there exists an element
 BS (called the complement of x) such that

� x + = 1
� x . = 0

P6. There exist at least two elements x and y BS such
that x y.

x
x

x



December 2006 N.J. Rao M2L1 15

Useful properties

dualityoflawtheapplyingbyprovedbecanbPart

)5bpostulate(0

)a2(postulatex.x

4b)postulate()x0(.x

5b)(postulate)x.(x0).(x

2a) (postulate0)0.x(0 .x :Proof

11xb.

00.xa.

 x allFor

1 and 0 of law Special :1Property















 BS

December 2006 N.J. Rao M2L1 16

Useful properties (2)

Property 2:
� The element 0 is unique.
� The element 1 is unique.
Proof for Part b by contradiction:
Assume that there are two 1s denoted 11 and 12.

x . 11 = x and y . 12 = y (Postulate 2b)
x . 11 = x and 12 . y = y (Postulate 3b)

December 2006 N.J. Rao M2L1 17

Useful properties (3)

Letting x = 12 and y = 11

12 . 11 = 12 and 12 . 11 = 11

11 = 12 (transitivity property)
which becomes a contradiction of initial assumption

Property �a� can be established by applying the principle of
duality.

December 2006 N.J. Rao M2L1 18

Useful properties (3)

duality of principle ofn applicatio by the validisbPart

10

a)postulate5(100

000

2a) (postulatex0x:Proof

01 is1 ofcomplement Theb.

10is0ofcomplementThea.

3opertyPr













December 2006 N.J. Rao M2L1 19

Useful properties (4)

duality)(byxx.x

2a) (postulate x

5b) (postulate0x

)4a(postulate)x.(xx

)5a(postulate)x(x.x)x(

2b)(postulate 1 . x)(x x x:Proof

 x x . x b.

 x x x a.

BS x allFor



















Property 4: Idempotency law

December 2006 N.J. Rao M2L1 20

Useful properties (5)

 sexpression logical gsimplifyinin Useful

duality)(by x)y (x . y) (x

2b) (postulate x

5a) (postulate 1 . x

4b) (postulate)y (y . x y . x y . x :Proof

 x)y (x . y) (x b.

 x y . x y . x a.

BS y and x allFor

lawAdjacency :5operty Pr















December 2006 N.J. Rao M2L1 21

Useful properties (6)

Property 6: First law of absorption.

For all x and y  BS,
x + (x . y) = x
x . (x + y) = x

Proof : x . (x + y) = (x + 0) . (x + y) (postulate 2a)
= x + (0 . y) (postulate 4a)
= x + 0 (property 2.1a)
= x (postulate 2a)

x + (x . y) = x (by duality)

December 2006 N.J. Rao M2L1 22

Useful properties (7)

duality)(by y . x y) x(. x

2b) (postulate y x

5a) (postulate y) (x . 1

4a) (postulate y) (x .)x (x y) . x(x :Proof

y . x y) x(. x b.

y x y) . x(x a.

BS y and x allFor

absorption of law Second :7operty Pr















December 2006 N.J. Rao M2L1 23

Useful properties (8)

duality)(by z) x(. y) (x z) (y . z) x(. y) (x

2b) (postulate z . x y . x

b) 2.1 (postulate 1 z. . x 1 y. . x

4b) (postulate y) (1 . z . x z) (1 .y . x

4b) (postulate z .y . x z . x z y. . x y . x

5a) (postulate z .y).x (x z . x y . x

2b) (postulate z .y 1. z . x y . x

z y. z . x y . x :Proof

z) x(. y) (x z) (y . z) . x(. y) (x b.

z . x y . x z .y z . x y . x a.

BS z y, x,allFor

law Consensus :8Property























December 2006 N.J. Rao M2L1 24

Useful properties (9)

For all x and y  BS,
If (a) x + y = y and (b) x . y = y, then x = y
Proof: Substituting (a) into the left-hand side of (b), we have

x . (x + y) = y
However by the first law of absorption

x . (x + y) = x (property 6)
Therefore, by transitivity x = y

December 2006 N.J. Rao M2L1 25

Useful properties (10)

5a) (postulate x . x 1 . x) x(

4a) (postulate)x x(. x) x(

5b) (postulate)x .(x x

2a) (postulate 0 x x

x x . x and x x) x(

is, that holds, 2.9)(property identity of

law that theshow toneed We:Proof

 x x BS, x allFor

involution of law The :10Property













December 2006 N.J. Rao M2L1 26

Useful properties (10) (contd.)

 x x have weidentity, of law by the Therefore,

2a) (postulate x . x

5b) (postualte 0 x . x

5a) (postulate x . x x . x

2b) (postulate)x (x . x

1 . x x Also













December 2006 N.J. Rao M2L1 27

Useful properties (11)

duality)(by y x .yx

y x of complement theis)y . x(Therefore,

2.16)(property 1

5a) (postulate 1 x

2.7a)(property y y x

3a) (postulatey)y . x (x)y. x(y) (x

2a) (postulate 0 0 0

4b) (postulate)y . x .(y)y . x .(x)y . x(. y) (x :Proof

y x y .x b.

y . x y x a.

BS y x,allFor

Law sDeMorgan' :11Property























December 2006 N.J. Rao M2L1 28

DeMorgan's law

� bridges the AND and OR operations
� establishes a method for converting one form of a

Boolean function into another
� allows the formation of complements of expressions with

more than one variable
� can be extended to expressions of any number of

variables through substitution

December 2006 N.J. Rao M2L1 29

Example of DeMorgan�s Law

z . y . x

law) sDeMorgan'(by z y . x

on)substituti(by z y x wx Therefore

law) sDeMorgan'(by w . x w x Since

 w x z y then x w, z y Let

z . y . x z y x













December 2006 N.J. Rao M2L1 30

Boolean Operators

BS = {0, 1}
Resulting Boolean algebra is more suited to working with
switching circuits
Variables associated with electronic switching circuits
take only one of the two possible values.
The operations "+" and "." also need to be given
appropriate meaning

December 2006 N.J. Rao M2L1 31

Binary Variables

Definition: A binary variable is one that can assume one
of the two values 0 and 1.

These two values are meant to express two exactly
opposite states.
If A 0, then A = 1.
If A 1, then A = 0

Examples:
 if switch A is not open then it is closed
 if switch A is not closed then it is open

Statement like
"0 is less than 1" or " 1 is greater than 0� are invalid in

Boolean algebra





December 2006 N.J. Rao M2L1 32

NOT Operator

� The Boolean operator NOT, also known as complement
operator

� NOT operator is represented by " " (overbar) on the
variable, or " / " (a superscript slash) after the variable

Definition: Not operator is defined by
A A/

0 1
1 0

� " / " symbol is preferred for convenience in typing and
writing programs

� Circuit representation:

December 2006 N.J. Rao M2L1 33

OR Operator

Definition: The Boolean operator "+" known as OR operator
is defined by

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

The circuit symbol for logical OR operation

December 2006 N.J. Rao M2L1 34

And Operator

� Definition: The Boolean operator "." known as AND

operator is defined by

A B A.B
0 0 0
0 1 0
1 0 0
1 1 1

Circuit symbol for the logical AND operation

December 2006 N.J. Rao M2L1 35

Boolean Operators and Switching
Circuits

Open Closed

Closed Open

A A

1111

0101

0110

0000

A.BA+BBA

December 2006 N.J. Rao M2L1 36

Additional Boolean Operators
� NAND,
� NOR,
� Exclusive-OR (Ex-OR)
� Exclusive-NOR (Ex-NOR)
Definitions

100011

010101

010110

101100

A BA B(A+B)/(AB)/BA 

December 2006 N.J. Rao M2L1 37

Additional Operations (2)

NAND operation is just the complement of AND operation
NOR operation is the complement of OR operation
Exclusive-NOR is the complement of Exclusive-OR

operation
Circuit Symbols



December 2006 N.J. Rao M2L1 38

Functionally complete sets of
operations

� OR, AND and NOT
� OR and NOT
� AND and NOT
� NAND
� NOR

December 2006 N.J. Rao M2L1 39

Completeness of AND, OR and NOT

A
B

NOR

A
B

NAND

A

B
EX-OR

A

B
EX-NOR

December 2006 N.J. Rao M2L1 40

Completeness of OR and NOT
operations

December 2006 N.J. Rao M2L1 41

Completeness of AND and NOT

A

B
OR

A

B
NOR

A
B

NAND

A

B

EX-NOR

A

B

EX-OR

December 2006 N.J. Rao M2L1 42

Completeness of NAND

December 2006 N.J. Rao M2L1 43

Completeness of NOR

A

B
OR

A

B

AND

A

NOT

A

B
NAND

A
B

EX-NOR

A
B

EX-OR

WHAT IS BOOLEAN ALGEBRA?

Consider the electrical circuit that controls the lighting of a bulb.

Four switches control the operation of the bulb. The manner in which the operation of

the bulb is controlled can be stated as

The bulb switches on if the switches S1 and S2 are closed, and S3 or S4 is also

closed, otherwise the bulb will not switch on

From this statement one can make the following observations:

• Any switch has two states: “closed” or “open”

• The bulb is switched on only when the switches are in some well defined

combination of states.

• The possible combinations are expressed through two types of relationships:

“and” and “or”.

• The two possible combinations are

 “S1 and S2 and S3 are closed”

 “S1 and S2 and S4 are closed”

There are many situations of engineering interest where the variables take only a small

number of possible values.

Some examples:

• Relay network used in telephone exchanges of earlier era

• Testing through multiple choice questions

• Mechanical display boards in airports and railway stations

• Choices available at road junctions.

Can you identify a situation of significance where the variables can take only a small

number of distinctly defined states?

How do we implement functions similar to the example shown above? We need devices

that have finite number states. It seems to be easy to create devices with two well

defined states. It is more difficult and more expensive to create devices with more than

two states.

Let us consider devices with two well defined states. We should also have the ability to

switch the state of the device from one state to the other. We call devices having two

well defined states as “two-valued switching devices”.

Some examples of devices with two states

• A bipolar transistor in either fully-off or fully-on state

• A MOS transistor in either fully off or fully on state

• Simple relays

• Electromechanical switch

If we learn to work with two-valued variables, we acquire the ability to implement

functions of such variables using two-state devices. We call them “binary variables”.

Very complex functions can be represented using several binary variables. As we can

also build systems using millions of electronic two-state devices at very low costs, the

mathematics of binary variables becomes very important.

An English mathematician, George Boole, introduced the idea of examining the truth or

falsehood of language statements through a special algebra of logic. His work was

published in 1854, in a book entitled “An Investigation of the Laws of Thought”. Boole's

algebra was applied to statements that are either completely correct or completely false.

A value 1 is assigned to those statements that are completely correct and a value 0 is

assigned to statements that are completely false. As these statements are given

numerical values 1 or 0, they are referred to as digital variables.

In our study of digital systems, we use the words switching variables, logical variables,

and digital variables interchangeably.

Boole's algebra is referred to as Boolean algebra. Originally Boolean algebra was mainly

applied to establish the validity or falsehood of logical statements.

In 1938, Claude Shannon of Department of Electrical Engineering at Massachusetts

Institute of Technology in (his master's thesis) provided the first applications of the

principles of Boolean algebra to the design of electrical switching circuits. The title of

the paper, which was an abstract of his thesis, is “A Symbolic Analysis of Relay and

Switching Circuits”. Shannon established Boole's algebra to switching circuits is what

ordinary algebra is to analogue circuits.

Logic designers of today use Boolean algebra to functionally design a large variety of

electronic equipment such as

• hand-held calculators,

• traffic light controllers,

• personal computers,

• super computers,

• communication systems

• aerospace equipment

• etc.

We next explore Boolean algebra at the axiomatic level. However, we do not worry about

the devices that would be used to implement them and their limitations.

Boolean Algebra and Huntington Postulates

Any branch of mathematics starts with a set of self-evident statements known as

postulates, axioms or maxims. These are stated without any proof.

Boolean algebra is a specific instance of Algebra of Propositional Logic.

E.V.Huntington presented basic postulates of Boolean Algebra in 1904 in his paper

“Sets of Independent Postulates for the Algebra of Logic”. He defined a multi-valued

Boolean algebra on a set of finite number of elements.

In Boolean algebra as applied to the switching circuits, all variables and relations are

two-valued. The two values are normally chosen as 0 and 1, with 0 representing

false and 1 representing true. If x is a Boolean variable, then

 x = 1 means x is true

 x = 0 means x is false

When we apply Boolean algebra to digital circuits we will find that the qualifications

“asserted” and “not-asserted” are better names than “true” and “false”. That is when

x = 1 we say x is asserted, and when x = 0 we say x is not-asserted.

You are expected to be familiar with

• Concept of a set

• Meaning of equivalence relation

• The principle of substitution

Definition: A Boolean algebra consists of a finite set of elements BS subject to

• Equivalence relation "=",

• One unary operator “not” (symbolised by an over bar),

• Two binary operators "." and "+",

• For every element x and y ∈ BS the operations x (not x), x.y and x +y are

uniquely defined.

The unary operator ‘not’ is defined by the relation

 1= 0; 0 = 1

The not operator is also called the complement, and consequently x is the

complement of x.

The binary operator ‘and’ is symbolized by a dot. The ‘and’ operator is defined by the

relations

 0 . 0 = 0

 0 . 1 = 0

 1 . 0 = 0

 1 . 1 = 1

The binary operator ‘or’ is represented by a plus (+) sign. The ‘or’ operator is

defined by the relations

 0 + 0 = 0

 0 + 1 = 1

 1 + 0 = 1

 1 + 1 = 1

Huntington's postulates apply to the Boolean operations

P1. The operations are closed.

For all x and y ∈ BS,

a. x + y ∈ BS

b. x . y ∈ BS

P2. For each operation there exists an identity element.

a. There exists an element 0 ∈ BS such that for all x ∈ BS, x + 0 = x

b. There exists an element 1 ∈ BS such that for all x ∈ BS, x . 1 = x

P3. The operations are commutative.

For all x and y ∈ BS,

a. x + y = y + x

b. x . y = y . x

P4. The operations are distributive.

For all x, y and z ∈ BS,

a. x + (y . z) = (x + y) . (x + z)

b. x . (y + z) = (x . y) + (x . z)

P5. For every element x ∈ BS there exists an element x ∈ BS (called the

complement of x) such that x + x = 1 and x . x = 0

P6. There exist at least two elements x and y ∈ BS such that x ≠ y.

Propositions from Huntington’s Postulates

We derive several new propositions using the basic Huntington’s postulates.

Through these propositions we will be able to explore the structures and implications

of that branch of mathematics. Such propositions are called theorems. A theorem

gives a relationship among the variables.

Definition: A Boolean expression is a constant, 1 or 0, a single Boolean variable or

its complement, or several constants and/or Boolean variables and/or their

complements used in combination with one or more binary operators.

According to this definition 0, 1, x and x are Boolean expressions. If A and B are

Boolean expressions, then A , B , A+B and A.B are also Boolean expressions.

Duality: Many of the Huntington’s postulates are given as pairs, and differ only by

the simultaneous interchange of operators "+" and "." and the elements "0" and "1".

This special property is called duality.

The property of duality can be utilized effectively to establish many useful properties

of Boolean algebra.

The duality principle

“If two expressions can be proven equivalent by applying a sequence of basic

postulates, then the dual expressions can be proven equivalent by simply applying

the sequence of dual postulates”

This implies that for each Boolean property, which we establish, the dual property is

also valid without needing additional proof.

Let us derive some useful properties:

Property 1: Special law of 0 and 1

For all x ∈ BS,

a. x . 0 = 0

b. x + 1 = 1

Proof: x . 0 = (x . 0) + 0 (postulate 2a)

 = (x . 0) + (x . x) (postulate 5b)

 = x . (0 + x) (postulate 4b)

 = x . x (postulate 2a)

 = 0 (postulate 5b)

Property: b can be proved by applying the law of duality, that is, by interchanging "."

and "+", and "1" and "0".

Property 2:

a. The element 0 is unique.

b. The element 1 is unique.

Proof for Part b by contradiction: Let us assume that there are two 1s denoted 11

and 12. Postulate 2b states that

 x. 11 = x and y. 12 = y

Applying the postulate 3b on commutativity to the second relationship, we get

 11 . x = x and 12 . y = y

Letting x = 12 and y = 11, we obtain

 11 . 12 = 12 and 12 . 11 = 11

Using the transitivity property of any equivalence relationship we obtain 11 = 12,

which becomes a contradiction of our initial assumption.

Property a can be established by applying the principle of duality.

Property 3

a. The complement of 0 is 0 = 1.

b. The complement of 1 is1 = 0.

Proof: x + 0 = x (postulate 2a)

 0 + 0 = 0

 0 + 0 = 1 (postulate 5a)

 0 = 1

Part b is valid by the application of principle of duality.

Property 4: Idempotency law

For all x ∈ BS,

a. x + x = x

b. x . x = x

Proof: x + x = (x + x) . 1 (postulate 2b)

 = (x + x) . (x + x) (postulate 5a)

 = x + (x . x) (postulate 4a)

 = x + 0 (postulate 5b)

 = x (postulate 2a)

 x . x = x (by duality)

Property 5: Adjacency law

For all x and y ∈ BS,

a. x . y + x . y = x

b. (x + y) . (x + y) = x

Proof: x . y + x . y = x . (y + y) (postulate 4b)

 = x . 1 (postulate 5a)

 = x (postulate 2b)

 (x + y) . (x + y) = x (by duality)

The adjacency law is very useful in simplifying logical expressions encountered in the

design of digital circuits. This property will be extensively used in later learning

units.

Property 6: First law of absorption

For all x and y ∈ BS,

a. x + (x . y) = x

b. x . (x + y) = x

Proof x . (x + y) = (x + 0) . (x + y) (postulate 2a)

 = x + (0 . y) (postulate 4a)

 = x + 0 (property 2.1a)

 = x (postulate 2a)

 x + (x . y) = x (by duality)

Property 7: Second law of absorption

For all x and y ∈ BS,

a. x + (x . y) = x + y

b. x . (x + y) = x . y

Proof: x + (x . y) = (x + x) . (x + y) (postulate 4a)

 = 1. (x + y) (postulate 5a)

 = x + y (postulate 2b)

 x . (x + y) = x . y (by duality)

Property 8: Consensus law

For all x, y and z ∈ BS,

a. x . y + x . z + y . z = x . y + x . z

b. (x + y) . (x + z) . (y + z) = (x + y) . (x + z)

Proof: x . y + x . z + y . z

 = x . y + x . z + 1 . y . z (postulate 2b)

 = x . y + x . z + (x + x) . y . z (postulate 5a)

 = x . y + x . z + x . y . z + x . y . z (postulate 4b)

 = x . y + x . y . z + x . z + x . y . z (postulate 3a)

 = x . y . (1 + z) + x . z . (1 + y) (postulate 4b)

 = x . y . 1 + x . z . 1 (property 2.1b)

 = x . y + x . z (postulate 2b)

(x + y) . (x + z) . (y + z) = (x + y) . (x + z) (by duality)

Property 9: Law of identity

For all x and y ε BS, if

a. x + y = y

b. x . y = y, then x = y

Proof: Substituting (a) into the left-hand side of (b), we have

 x . (x + y) = y

However by the first law of absorption

 x . (x + y) = x (property 6)

Therefore, by transitivity x = y

Property 10: The law of involution

For all x ∈ BS, x = x

Proof: We need to show that the law of identity (property 2.9) holds, that is,

 (x + x) = x and x . x = x

 x = 0x + (postulate 2a)

 =)x.x(x + (postulate 5b)

 =)xx).(xx(++ (postulate 4a)

 = 1).xx(+ (postulate 5a)

Thus x = xx +

Also x = 1.x (postulate 2b)

 =)xx.(x + (postulate 5a)

 = x.xx.x + (postulate 4b)

 = 0x.x + (postulate 5b)

 = x.x (postulate 2a)

Therefore by the law of identity, we have xx =

Property 11: DeMorgan's Law

For all x, y ∈ BS,

a. yx + = y.x

b. y.x = yx +

Proof:)y.x(y.)y.x(x.)y.x).(yx(+=+ (postulate 4b)

 = 0 + 0

 = 0 (postulate 2a)

 y)y.x(x)y.x(y)(x ++=++ (postulate 3a)

 = yyx ++ (property 2.7a)

 = x + 1 (postulate 5a)

 = 1 (property 2.16)

Therefore, (x . y) is the complement of (x + y).

 x.y = yx + (by duality)

DeMorgan's law bridges the AND and OR operations, and establishes a method for

converting one form of a Boolean function into another. More particularly it gives a

method to form complements of expressions involving more than one variable. By

employing the property of substitution, DeMorgan's law can be extended to

expressions of any number of variables. Consider the following example:

 zyx ++ = z.y.x

Let y + z = w, then x + y + z = x + w.

 wx + = w.x (by DeMorgan's law)

wx + = zyx ++ (by substitution)

 = zy.x + (by DeMorgan's law)

 = z.y.x (by DeMorgan's law)

At the end of this Section the reader should remind himself that all the postulates

and properties of Boolean algebra are valid when the number of elements in the BS

is finite. The case of the set BS having only two elements is of more interest here

and in the topics that follow in this course on Design of Digital systems.

All the identities derived in this Section are listed in the Table 1 to serve as a ready

reference.

TABLE: Useful Identities of Boolean Algebra

Complementation 0xx. =

 1xx =+

0 - 1 law x.0 = 0

 x+1 = 1

 x+0 = x

 x.1 = x

Idempotency x.x = x

 x+x = x

Involution xx =

Commutative law x . y = y . x

 X + y = y + x

Associative law (x . y).z = x. (y.z)

 (x + y) + z = x + (y+z)

Distributive law x + (y.z) = (x+y).(x+z)

 X . (y+z) = x.y +x.z

Adjacency law xyx.x.y =+

 xy)y).(x(x =++

Absorption law x + x . y = x

 x . (x+y) = x

 yx.yxx +=+

 x.yy)xx.(=+

Consensus law .zxx.yy.z.zxx.y +=++

 z)xy).((xz)z).(yxy).((x ++=+++

DeMorgan's law y.xyx =+

 yxx.y +=

The properties of Boolean algebra when the set BS has two elements, namely 0 and

1, will be explored next.

BOOLEAN OPERATORS

Recall that Boolean Algebra is defined over a set (BS) with finite number of elements. If

the set BS is restricted to two elements {0, 1} then the Boolean variables can take only

one of the two possible values. As all switches take only two possible positions, for

example ON and OFF, Boolean Algebra with two elements is more suited to working with

switching circuits. In all the switching circuits encountered in electronics, the variables

take only one of the two possible values.

Definition: A binary variable is one that can assume one of the two values, 0 or 1.

These two values, however, are meant to express two exactly opposite states. It means,

if a binary variable A ≠ 0 then A = 1. Similarly if A ≠ 1, then A = 0.

Note that it agrees with our intuitive understanding of electrical switches we are familiar

with.

a. if switch A is not open then it is closed

b. if switch A is not closed then it is open

The values 0 and 1 should not be treated numerically, such as to say "0 is less than 1"

or " 1 is greater than 0".

Definition: The Boolean operator NOT, also known as complement operator represented

by " " (overbar) on the variable, or " / " (a superscript slash) after the variable, is

defined by the following table.

A A/
0 1
1 0

Though it is more popular to use the symbol " " (overbar) in most of the text-books, we

will adopt the " / " to represent the complement of a variable, for convenience of typing.

The circuit representation of the NOT operator is shown in the following:

Definition: The Boolean operator "+" known as OR operator is defined by the table

given in the following.

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

2

The circuit symbol for logical OR operation is given in the following.

Definition: The Boolean operator "." known as AND operator is defined by the table

given below

A B A.B

0 0 0

0 1 0

1 0 0

1 1 1

The circuit symbol for the logical AND operation is given in the following.

The relationship of these operators to the electrical switching circuits can be seen from

the equivalent circuits given in the following.

Consider the NOT operator

Consider the OR and AND operators

A B A + B A.B
Open Open Open Open
Open Closed Closed Open
Closed Open Closed Open
Closed Closed Closed Closed

We can define several other logic operations besides these three basic logic operations.

These include

 A/ A
open closed
closed open

A

A/

• NAND

• NOR

• Exclusive-OR (Ex-OR for short)

• Exclusive-NOR (Ex-NOR)

These are defined in terms of different combinations of values the variables assume, as

indicated in the following table:

A B (A.B)/

NAND
(A+B)/

NOR
A⊕B
EX-OR

A B
EX-NOR

0 0 1 1 0 1
0 1 1 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1

Observe the following:

• NAND operation is just the complement of AND operation

• NOR operation is the complement of OR operation.

• Exclusive-OR operation is similar to OR operation except that EX-OR

operation leads to 0, when the two variables take the value of 1.

• Exclusive-NOR is the complement of Exclusive-OR operation.

These functions can also be represented graphically as shown in the figure.

A set of Boolean operations is called functionally complete set if all Boolean expressions

can be expressed by that set of operations. AND, OR and NOT constitute a functionally

complete set. However, it is possible to have several combinations of Boolean operations

as functionally complete sets.

 - OR, AND and NOT

 - OR and NOT

 - AND and NOT

4

 - NAND

 - NOR

The completeness of these combinations is shown in the following.

All Boolean functions through AND and NOT operations

All Boolean functions through OR and NOT operations

All Boolean functions through NAND function

All Boolean functions through NOR function

6

Digital Electronics
Module 2: Boolean Algebra and
Boolean Operators: Logic Functions

N.J. Rao
Indian Institute of Science

id4015353 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M2L2 2

Logic Functions

� Electrical and electronic circuits can be built with devices
that have two states

� Variables with only two values are called Logic variables
or Switching variables

� We defined several Boolean/Logic operators
� A large variety of situations and problems can be

described using logic variables and logic operators.
� The description is done through �logic functions�

December 2006 N.J. Rao M2L2 3

Descriptions of logic functions

� Algebraic
� Truth-table
� Logic circuit
� Hardware description language
� Maps
Each form of representation is convenient in a different

context.

December 2006 N.J. Rao M2L2 4

Logic Functions in Algebraic Form

Let A1, A2, . . . An be logic variables defined on the set
BS = {0,1}.

A logic function of n variables associates a value 0 or 1 to
every one of the possible 2n combinations of the n
variables.
F1 = A1.A2/.A3.A4 + A1/.A2.A3/.A4 + A1.A2/.A3.A4/
 F1 is a function of 4 variables

It is not necessary to have all the variables in all the terms.
F2 = A1.A2 + A1/.A2.A3/ + A1/.A2.A4/.A5

December 2006 N.J. Rao M2L2 5

Properties of logic functions

� If F1(A1, A2, ... An) is a logic function, then (F1(A1,
A2, ... A n))/ is also a Boolean function.

� If F1 and F2 are two logic functions, then F1+F2 and
F1.F2 are also Boolean functions.

� Any function that is generated by the finite application
of the above two rules is also logic function

There are a total of 2 distinct logic functions of n
variables.

2n

2 n

December 2006 N.J. Rao M2L2 6

Terms to get familiarized

� Literal: not-complemented or complemented version of
a variable (A and A/ are literals)

� Product term: A series of literals related to one another
through an AND operator.
Ex: A.B/.D, A.B.D/.E, etc.

� Sum term: A series of literals related to one another
through an OR operator.
Ex: A+B/+D, A+B+D/+E, etc.

December 2006 N.J. Rao M2L2 7

Truth Table

� It is a tabular representation of a logic function.
� It gives the value of the function for all possible

combinations of the values of the variables
� For each combination, the function takes either 1 or 0
� These combinations are listed in a table, which

constitute the truth table for the given function.
� The information contained in the truth table and in the

algebraic representation of the function are the same.

December 2006 N.J. Rao M2L2 8

Example of a truth-table

F(A, B) = A.B + A.B/

Truth table

111

101

010

000

FBA

December 2006 N.J. Rao M2L2 9

Truth and Truth Table

� The term truth table came into usage long before
Boolean algebra came to be associated with digital
electronics.

� Boolean functions were originally used to establish truth
or falsehood of a statement.

� When statement is true the "1" is associated with it
� When it is false "0" is associated.
� This usage got extended to the variables associated with

digital circuits

December 2006 N.J. Rao M2L2 10

Inappropriateness of truth and falsity

� All variables in digital systems are indicative of actions.
Examples: "CLEAR", "LOAD", "SHIFT", "ENABLE", and
"COUNT"

� They are suggestive of actions.
� When a variable is asserted, the intended action takes

place
� When a variable is not asserted the intended action does

not take place
� Associate "1" with the assertion of a variable, and "0"

with the non-assertion of that variable.

December 2006 N.J. Rao M2L2 11

Assertion and Non-assertion

F = A.B + A.B/

� Read it as "F is asserted when A and B are asserted or
A is asserted and B is not asserted".

� We will continue to use the term "truth table" for
historical reasons

We understand it as
an input-output table associated with a logic function

but not as something that is concerned with the
establishment of truth.

December 2006 N.J. Rao M2L2 12

Size of the Truth-Table

� A five variable function would require 32 entries
� A six-variable function would require 64 entries
When the number of variables increase a simple artefact

may be adopted.
� A truth table will have entries only for those terms for

which the value of the function is "1", without loss of any
information.

� This is particularly effective when the function has

smaller number of terms.

December 2006 N.J. Rao M2L2 13

Simpler Truth Table
F = A.B.C.D/.E/ + A.B/.C.D/.E + A/.B/.C.D.E + A.B/.C/.D.E

111001

111100

110101

100111

FEDCBA

December 2006 N.J. Rao M2L2 14

English Sentences  Logic Functions

Anil freaks out with his friends if it is Saturday and

he completed his assignments

� F = 1 if �Anil freaks out with his friends�; otherwise F = 0
� A = 1 if �it is Saturday�; otherwise A = 0
� B = 1 if �he completed his assignments�; otherwise B = 0
F is asserted if A is asserted and B is asserted.
The sentence, therefore, can be translated into a logic

equation as
F = A.B

December 2006 N.J. Rao M2L2 15

Rahul will attend the Networks class

if and only if his friend Shaila is attending the class

and the topic being covered in class is important from
examination point of view

or there is no interesting matinee show in the city
and
the assignment is to be submitted

F

A

B

C/

D

F = A.B + C/.D

December 2006 N.J. Rao M2L2 16

Minterms

� A logic function has product terms.
� Product terms that consist of all the variables of a

function are called "canonical product terms",
"fundamental product terms" or "minterms".

� The term A.B.C/ is a minterm in a three variable logic
function, but will be a non-minterm in a four variable logic

function.

December 2006 N.J. Rao M2L2 17

Maxterms

� Sum terms which contain all the variables of a Boolean
function are called "canonical sum terms", "fundamental
sum terms" or "maxterms".

� (A+B/+C) is an example of a maxterm in a three variable
logic function.

December 2006 N.J. Rao M2L2 18

Minterms and Maxterms of 3 variables

A/ + B/ + C/ = M7ABC = m71117

A/+ B/ + C = M6A B C/ = m60116

A + B + C/ = M5A B/C = m51015

A + B + C = M4A B/C/ = m40014

A + B/ + C/ = M3A/ BC = m31103

A + B/ + C = M2A/ BC/ = m20102

A + B + C/ = M1A/ B/C = m11001

A + B + C = M0A/B/C/ = m00000

MaxtermsMintermsCBATerm No.

December 2006 N.J. Rao M2L2 19

Logic function as a sum of minterms

Consider a function of three variables
F = m0 + m3 + m5 + m6

This is equivalent to

F = A/B/C/ + A/BC + A/BC/ + ABC/

A logic function that is expressed as an OR of several
product terms is considered to be in "sum-of-products" or

SOP form.

December 2006 N.J. Rao M2L2 20

Logic function as a product of
Maxterms

F is a function of three variables
F = M0 . M3 . M5 . M6

When F expressed as an AND of several sum terms, it is

considered to be in "product-of-sums" or POS form.

December 2006 N.J. Rao M2L2 21

Canonical form

If all the terms in an expression or function are
canonical in nature, then it is considered to be in
canonical form.
� minterms in the case of SOP form
� maxterms in the case of POS form

December 2006 N.J. Rao M2L2 22

Canonical form (2)

Consider the function
F = A.B + A.B/.C + A/.B.C

It is not in canonical form
It can be converted into canonical form:

A.B = A.B.1 (postulate 2b)
= A.B.(C + C/) (postulate 5a)
= A.B.C + A.B.C/ (postulate 4b)

The canonical version of F

F = A.B.C + A.B.C/+ A.B/.C + A/.B.C

December 2006 N.J. Rao M2L2 23

Priorities in a logical expression

� NOT (/) operation has the highest priority,
� AND (.) has the next priority
� OR (+) has the last priority

in
F = A.B + A.B/.C + A/.B.C

December 2006 N.J. Rao M2L2 24

Sequence of operations

F = A.B + A.B/.C + A/.B.C
 NOT operation on B and A
 AND terms: A.B, A.B/.C, A/.B.C
 OR operation on AB, A.B/.C and A/. B.C

The order of priority can be modified through using
parentheses.

F1 = A.(B+C/) + A/.(C+D)
By applying the distributive law, these expressions can
be brought into the SOP form

December 2006 N.J. Rao M2L2 25

Circuit Representation of Logic
Functions

A logic function can be represented in a
circuit form using these circuit symbols

F1 = A.B + A.B/

December 2006 N.J. Rao M2L2 26

Other forms

Boolean function in POS form
F2 = (A+B+C) . (A+B/+C/)

December 2006 N.J. Rao M2L2 27

Other forms
Logical function in terms of other functionally complete
set of logical operations
NAND is one such functionally complete set.

December 2006 N.J. Rao M2L2 28

Other forms

NOR is another functionally complete set.

A
B

F1

Logic Functions

Many types of electrical and electronic circuits can be built with devices that have two

possible states. We are, therefore interested in working with variables, which can take

only two values. Such two valued variables are called Logic variables or Switching

variables.

We defined several Boolean operators, which can also be called Logic operators. We will

find that it is possible to describe a wide variety of situations and problems using logic

variables and logic operators. This is done through defining a “logic function” of logic

variables.

We can describe logic functions in several ways. These include

• Algebraic

• Truth-table

• Logic circuit

• Hardware description language

• Maps

We use all these forms to express logic functions in working with digital circuits. Each

form of representation is convenient in some context. Initially we will work with

algebraic, truth-table, and logic circuit representation of logic functions.

The objectives of this learning unit are

1. Writing the output of a logic network, whose word description is given, as a

function of the input variables either as a logic function, a truth-table, or a logic

circuit.

2. Create a truth-table if the description of a logic circuit is given in terms of a logic

function or as a logic circuit.

3. Write a logic function if the description of a logic circuit is given in terms of a

truth-table or as a logic circuit.

4. Create a logic circuit if its description is given in terms of a truth-table or as a

logic function.

5. Expand a given logic function in terms of its minterms or maxterms.

6. Convert a given truth-table into a logic function into minterm or maxterm forms.

7. Explain the nature and role of “don’t care” terms

Logic Functions in Algebraic Form

Let A1, A2, . . . An be logic variables defined on the set BS = {0,1}. A logic function of n

variables associates a value 0 or 1 to every one of the possible 2n combinations of the n

variables. Let us consider a few examples of such functions.

F1 = A1.A2/.A3.A4 + A1/.A2.A3/.A4 + A1.A2/.A3.A4/

F1 is a function of 4 variables. You notice that all terms in the function have all the four

variables. It is not necessary to have all the variables in all the terms. Consider the

following example.

F2 = A1.A2 + A1/.A2.A3/ + A1/.A2.A4/.A5

F2 happens to be simplified version of a function, which has a much larger number of

terms, where each term has all the variables. We will explore ways and means to

generate such simplifications from a given logic expression.

The logic functions have the following properties:

1. If F1(A1, A2, ... An) is a logic function, then (F1(A1, A2, ... A n))
/ is also a Boolean

function.

2. If F1 and F2 are two logic functions, then F1+F2 and F1.F2 are also Boolean

functions.

3. Any function that is generated by the finite application of the above two rules is

also a logic function

Try to understand the meaning of these properties by solving the following examples.

If F1 = A.B.C + A.B/.C + A.B.C/ what is the logic function that represents F1/ ?

If F1 = A.B + A/.C and F2 = A.B/ + B.C write the logic functions F1 + F2 and F1.F2?

As each one of the combinations can take value of 0 or 1, there are a total of 2
2n

 distinct

logic functions of n variables.

It is necessary to introduce a few terms at this stage.

"Literal" is a not-complemented or complemented version of a variable. A and A/ are

literals

"Product term" or "product" refers to a series of literals related to one another through

an AND operator. Examples of product terms are A.B/.D, A.B.D/.E, etc.

"Sum term" or "sum" refers to a series of literals related to one another through an OR

operator. Examples of sum terms are A+B/+D, A+B+D/+E, etc.

The choice of terms "product" and "sum" is possibly due to the similarity of OR and AND

operator symbols "+" and "." to the traditional arithmetic addition and multiplication

operations.

Truth Table Description of Logic Functions

The truth table is a tabular representation of a logic function. It gives the value of the

function for all possible combinations of values of the variables. If there are three

variables in a given function, there are 23 = 8 combinations of these variables. For each

combination, the function takes either 1 or 0. These combinations are listed in a table,

which constitutes the truth table for the given function. Consider the expression,

 F (A, B) = A.B + A.B/

The truth table for this function is given by,

A B F
0 0 0
0 1 0
1 0 1
1 1 1

The information contained in the truth table and in the algebraic representation of the

function are the same.

The term ‘truth table’ came into usage long before Boolean algebra came to be

associated with digital electronics. Boolean functions were originally used to establish

truth or falsehood of statements. When statement is true the symbol "1" is associated

with it, and when it is false "0" is associated. This usage got extended to the variables

associated with digital circuits. However, this usage of adjectives "true" and "false" is

not appropriate when associated with variables encountered in digital systems. All

variables in digital systems are indicative of actions. Typical examples of such signals

are "CLEAR", "LOAD", "SHIFT", "ENABLE", and "COUNT". These are suggestive of

actions. Therefore, it is appropriate to state that a variable is ASSERTED or NOT

ASSERTED than to say that a variable is TRUE or FALSE. When a variable is asserted,

the intended action takes place, and when it is not asserted the intended action does not

take place. In this context we associate "1" with the assertion of a variable, and "0" with

the non-assertion of that variable. Consider the logic function,

 F = A.B + A.B/

It should now be read as "F is asserted when A and B are asserted or A is asserted and

B is not asserted". This convention of using "assertion” and “non-assertion" with the

logic variables will be used in all the Learning Units of this course on Digital Systems.

The term ‘truth table’ will continue to be used for historical reasons. But we understand

it as an input-output table associated with a logic function, but not as something that is

concerned with the establishment of truth.

As the number of variables in a given function increases, the number of entries in the

truth table increases exponentially. For example, a five variable expression would

require 32 entries and a six-variable function would require 64 entries. It, therefore,

becomes inconvenient to prepare the truth table if the number of variables increases

beyond four. However, a simple artefact may be adopted. A truth table can have

entries only for those terms for which the value of the function is "1", without loss of any

information. This is particularly effective when the function has only a small number of

terms. Consider the Boolean function with six variables

 F = A.B.C.D/.E/ + A.B/.C.D/.E + A/.B/.C.D.E + A.B/.C/.D.E

The truth table will have only four entries rather than 64, and the representation of this

function is

A B C D E F
1 1 1 0 0 1
1 0 1 0 1 1
0 0 1 1 1 1
1 0 0 1 1 1

Truth table is a very effective tool in working with digital circuits, especially when the

number of variables in a function is small, less than or equal to five.

Conversion of English Sentences to Logic Functions

Some of the problems that can be solved using digital circuits are expressed through one

or more sentences. For example,

 At the traffic junction the amber light should come on 60 seconds after the red

light, and get witched off after 5 seconds.

 If the number of coins put into the vending machine exceed five rupees it should

dispense a Thums Up bottle.

 The lift should start moving only if the doors are closed and a floor number is

chosen.

These sentences should initially be translated into logic equations. This is done through

breaking each sentence into phrases and associating a logic variable with each phrase.

As stated earlier many of these phrases will be indicative of actions or directly represent

actions. We first mark each action related phrase in the sentence. Then we associate a

logic variable with it. Consider the following sentence, which has three phrases:

Anil freaks out with his friends if it is Saturday and he completed his assignments

We will now associate logic variables with each phrase. The words “if” and “and” are not

included in any phrase and they show the relationship among the phrases.

F = 1 if “Anil freaks out with his friends”; otherwise F = 0

A = 1 if “it is Saturday”; otherwise A = 0

B = 1 if “he completed his assignments”; otherwise B = 0

F is asserted if A is asserted and B is asserted. The sentence, therefore, can be

translated into a logic equation as

 F = A.B

For simple problems it may be possible to directly write the logic function from the word

description. In more complex cases it is necessary to properly define the variables and

draw a truth-table before the logic function is prepared. Sometimes the given sentences

may have some vagueness, in which case clarifications need to be sought from the

source of the sentence. Let us consider another sentence with more number of

phrases.

Rahul will attend the Networks class if and only if his friend Shaila is attending the class

and the topic being covered in class is important from examination point of view or there

is no interesting matinee show in the city and the assignment is to be submitted. Let us

associate different logic variables with different phrases.

2

Rahul will attend the Networks class if and only if his friend Shaila is attending the class

 F A

and the topic being covered in class is important from examination point of view or

 B

there is no interesting matinee show in the city and the assignment is to be
submitted

 C/ D

With the above assigned variables the logic function can be written as

 F = A.B + C/.D

Minterms and Maxterms

A logic function has product terms. Product terms that consist of all the variables of a

function are called "canonical product terms", "fundamental product terms" or

"minterms". For example the logic term A.B.C' is a minterm in a three variable logic

function, but will be a non-minterm in a four variable logic function. Sum terms which

contain all the variables of a Boolean function are called "canonical sum terms",

"fundamental sum terms" or "maxterms". (A+B/+C) is an example of a maxterm in a

three variable logic function.

Consider the Table which lists all the minterms and maxterms of three variables. The

minterms are designated as m0, m1, . . . m7, and maxterms are designated as M0, M1, . .

. M7.

Term No. A B C Minterms Maxterms

0 0 0 0 A/B/C/ = m0 A + B + C = M0

1 0 0 1 A/ B/C = m1 A + B + C/ = M1

2 0 1 0 A/ BC/ = m2 A + B/ + C = M2

3 0 1 1 A/ BC = m3 A + B/ + C/ = M3

4 1 0 0 A B/C/ = m4 A + B + C = M4

5 1 0 1 A B/C = m5 A + B + C/ = M5

6 1 1 0 A B C/ = m6 A/+ B/ + C = M6

7 1 1 1 ABC = m7 A/ + B/ + C/ = M7

A logic function can be written as a sum of minterms. Consider F, which is a function of

three variables.

 F = m0 + m3 + m5 + m6

This is equivalent to

 F = A/B/C/ + A/BC + AB/C + ABC/

A logic function that is expressed as an OR of several product terms is considered to be

in "sum-of-products" or SOP form. If it is expressed as an AND of several sum terms, it

is considered to be in "product-of-sums" or POS form. Examples of these two forms are

given in the following:

 F1 = A.B + A.B/.C + A/.B.C (SOP form)

 F2 = (A+B+C/) . (A+B/+C/) . (A/+B/+C) (POS form)

If all the terms in an expression or function are canonical in nature, that is, as minterms

in the case of SOP form, and maxterms in the case of POS form, then it is considered to

be in canonical form. For example, the function in the equation (1) is not in canonical

form. However it can be converted into its canonical form by expanding the term A.B as

A.B = A . B . 1 (postulate 2b)

 = A . B . (C + C/) (postulate 5a)

 = A . B . C + A . B . C/ (postulate 4b)

The canonical version of F1 is,

 F1 = A.B.C + A.B.C/ + A.B/.C + A/.B.C

The Boolean function F2 is in canonical form, as all the sum terms are in the form of

maxterms.

The SOP and POS forms are also referred to as two-level forms. In the SOP form, AND

operation is performed on the variables at the first level, and OR operation is performed

at the second level on the product terms generated at the first level.

Similarly, in the POS form, OR operation is performed at the first level to generate sum

terms, and AND operation is performed at the second level on these sum terms.

In any logical expression, the right hand side of a logic function, there are certain

priorities in performing the logical operations.

• NOT (/) operation has the highest priority,

• AND (.) has the next priority

• OR (+) has the last priority.

In the expression for F1 the operations are to be performed in the following sequence

• NOT operation on B and A

• AND terms: A.B, A.B/.C, A/.B.C

• OR operation on AB, AB/C and A/BC

However, the order of priority can be modified through using parentheses. It is also

common to express logic functions through multi-level expressions using parentheses. A

simple example is shown in the following.

 F1 = A.(B+C/) + A/.(C+D)

These expressions can be brought into the SOP form by applying the distributive law.

More detailed manipulation of algebraic form of logic functions will be explored in

another Learning Unit.

Circuit Representation of Logic Functions

Representation of basic Boolean operators through circuits was already presented in the

earlier Learning Unit. A logic function can be represented in a circuit form using these

circuit symbols. Consider the logic function

 F1 = A.B + A.B/

Its circuit form is

Consider another example of a Boolean function given in POS form.

 F2 = (A+B+C) . (A+B/+C/)

The circuit form of the logical expression F2 is

F1 can also be represented in terms of other functionally complete set of logical

operations. NAND is one such functionally complete set. NAND representation of logic

expression F2 is

NOR is another functionally complete set. NOR representation of the same function F1 is

Digital Electronics
Module 2: Boolean Algebra and Boolean
Operators: Karnaugh Map Method

N.J. Rao
Indian Institute of Science

id4730802 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M2L3 2

Karnaugh Map

� Key to minimizing a logic expression is identification of
logic adjacency

� Graphic representation of logic expression can facilitate
identification of adjacency

� M. Karnaugh introduced (1953) a map to pictorially
represent a logical expression.

� It is known as Karnaugh Map abbreviated as K-map.

December 2006 N.J. Rao M2L3 3

Karnaugh Map

� K-Map is a pictorial form of the truth-table.
� The inherent structure of the map facilitates systematic

minimization
� K-map uses the ability of human perception to identify

patterns and relationships when the information is
presented graphically

December 2006 N.J. Rao M2L3 4

Logical Adjacency

� Two terms are logically adjacent if they differ with
respect any one variable.

� ABC is logically adjacent to A/BC, AB/C and ABC/

� ABC is not logically adjacent to A/B/C, A/BC/, A/B/C/,
AB/C/

� The entries that are adjacent in a truth-table are not
necessarily logically adjacent

� K-map arranges the logically adjacent terms to be
physically adjacent

December 2006 N.J. Rao M2L3 5

Representation of a K-map

� There are two popular ways
� K-maps of a two variable function (representation �a� is

preferred)
 A A

B

0 0

1 1

2
2

3 3 B

a b

December 2006 N.J. Rao M2L3 6

Cells in a K-Map

The four cells (squares)
represent four minterms
Cell 0  minterm m0

Cell 1  minterm m1

Cell 2  minterm m2

Cell 3  minterm m3

Cell 1 (minterm m1) is adjacent
to cell 0 (minterm m0) and cell 3
(minterm m3)

 A

0

1

2

3 B

December 2006 N.J. Rao M2L3 7

Example 1

Consider a two-variable logic function
F = A/B + AB/

The truth table

A/B (01) and AB/ (10) are not logically adjacent

0
1
1
0

0
1
0
1

0
0
1
1

FBA

December 2006 N.J. Rao M2L3 8

Example 1(2)

$)

% � �

��

The two cells in which "1" is entered are not positionally
adjacent and hence are not logically adjacent

K-map of F

December 2006 N.J. Rao M2L3 9

Example 2

$

% �

�

�

�

F = A/B + AB

K-map

Cells in which "1" is entered are positionally adjacent
and hence logically adjacent

December 2006 N.J. Rao M2L3 10

Three-Variable Karnaugh Map

A three-variable (A, B and C) K-map has 23 = 8 cells

� The numbering followed assures logical adjacency
� Cell 0 (000) and the cell 4 (100) are also adjacent (cyclic
adjacency)
� The boundaries on the opposite sides of a K-map are
considered to be one common side for the associated two
cells

December 2006 N.J. Rao M2L3 11

Group of Terms

Adjacency is not merely between two cells

F =  (1, 3, 5, 7)
= A/B/C + A/BC + AB/C + ABC
= A/C(B/+B) + AC(B/+B)
= A/C + AC = (A/+A)C = C

December 2006 N.J. Rao M2L3 12

Cyclic Adjacency

A cyclic relationship among the
cells 1, 3, 5 and 7 can be
observed on the map

In a three-variable map other
groups of cells that are
cyclically adjacent are
 0, 1, 3 and 2
 2, 3, 7 and 6
 6, 7, 5 and 4
 4, 5, 1 and 0
 0, 2, 6 and 4

December 2006 N.J. Rao M2L3 13

Four-variable K-Map

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A

B

C

D

Groups with cyclic adjacency:
� 0, 1, 5 and 4
� 1, 5, 7, and 3 etc.
� 0, 1, 3, 2, 10, 11, 9 and 8
� 4, 12, 13,15,14, 6, 7 and 5
etc.

December 2006 N.J. Rao M2L3 14

Function of four variables

F =  (2, 3, 8, 9, 11, 12)

December 2006 N.J. Rao M2L3 15

5-Variable K-Map

December 2006 N.J. Rao M2L3 16

5-Variable K-Map (2)

� Simple and cyclic adjacencies are applicable to this map
� They need to be applied separately to the two sections

of the map
� Cell 8 and cell 0 are adjacent.
� Taking the assertion and non-assertion of A into

account, cell 0 and cell 16 are adjacent.
� Similarly there are 15 more adjacent cell pairs

(4-20,12-28, 8-24, 1-17, 5-21, 13-29, 9-25, 3-19, 7-23,
15-31,11-27, 2-18, 6-22, 14-30, and 10-26).

December 2006 N.J. Rao M2L3 17

5-Variable Function

F = A/BC/DE/ + A/BCDE/ + A/BC/DE + ABCDE + A/BC/D/E
+ ABC/DE/ + ABCDE/ + ABC/DE + ABC/D/E + ABC/D/E/

December 2006 N.J. Rao M2L3 18

K-Map Properties

� Karnaugh Map's main feature is to convert logic
adjacency into positional adjacency

� Every K-map has 2n cells corresponding to 2n

minterms
� Combinations are arranged in a special order so as to

keep the equivalence of logic adjacency to positional
adjacency

� There are three kinds of positional adjacency, namely
simple, cyclic and symmetric

December 2006 N.J. Rao M2L3 19

Function not in canonical POS form

� If the Boolean function is available in the canonical SOP
form, a "1" is entered in all those cells representing the
minterms of the expression, and "0" in all the other cells

� If it is not available in the canonical form, convert the
non-canonical form into canonical SOP form

� Convert the function into the standard SOP form and
directly prepare the K-map.

December 2006 N.J. Rao M2L3 20

Example

A

D

B

C

1 1 0 0

1 1 1 0

0 1 0 0

 0 1 1 0

F = A/B + A/B/C/ + ABC/D + ABCD/

There are four variables in the expression
A/B, containing two variables represents four minterms
A/B/C/ represents two minterms

December 2006 N.J. Rao M2L3 21

Function in POS form

F = (0, 4, 6, 7, 11, 12, 14, 15)
0s are filled in the cells represented by the maxterms

December 2006 N.J. Rao M2L3 22

Function in standard POS form

� Initially convert the standard POS form of the expression
into its canonical form, and enter 0s in the cells
representing the maxterms

� Enter 0s directly into the map by observing the sum
terms one after the other

December 2006 N.J. Rao M2L3 23

Example in the POS form

F = (A+B+D/).(A/ +B+C/ +D).(B/ +C) /

Convert into canonical POS form
F = (A+B+C+D/).(A+B+C/ +D/)(A/ +B+C/ +D). (A+B/ +C+D).

(A/ +B/ +C+D).(A+B/ +C+D/). (A/ +B/ +C+D/)
= M1 . M3 . M10 . M4 . M12 . M5 . M13

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in
them while the remaining cells are filled with 1s

December 2006 N.J. Rao M2L3 24

Example in the POS form
F = (A+B+D/).(A/+B+C/+D).(B/+C)
�(A+B+D/) has A and B asserted and D non-asserted. The two
maxterms associated with this sum term are 0001 (M1) and 0011 (M3)
�(A/+B+C/+D) is in canonical form and the maxterm associated with is
1010 (M10)
�Maxterms associated with (B/+C) are 0100 (M4), 1100 (M12), 0101
(M5) and 1101 (M13)

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1
1

A

B

C

D

December 2006 N.J. Rao M2L3 25

Essential, Prime and Redundant
Implicants

The patterns of adjacency of 1-entered cells are referred to
as implicants.
An implicant is a group of 2i (i = 0, 1n) minterms
(1-entered cells) that are logically (positionally) adjacent.

December 2006 N.J. Rao M2L3 26

Implicants and Product Terms

An implicant represents a product term
� Implicant 1 represents the product term AC/

� Implicant 2 represents ABD
� Implicant 3 represents BCD
� Implicant 4 represents A/B/CD/

Smaller the number of implicants the smaller the number of
product terms in the simplified Boolean expression.

December 2006 N.J. Rao M2L3 27

Many ways of identifying implicants

December 2006 N.J. Rao M2L3 28

Implicants with properties

� A prime implicant is one that is not a subset of any
other implicant

� A prime implicant which includes a 1-entered cell that is
not included in any other prime implicant is called an
essential prime implicant.

� A redundant implicant is one in which all the 1-entered
cells are covered by other implicants

December 2006 N.J. Rao M2L3 29

Example

�Implicants 2, 3, 4 and 5 in (a), and 1, 2 and 3 in (b) are prime implicants
�Implicants 2, 4 and 5 in (a), and

1, 2 and 3 in (b) are essential prime implicants
�Implicants 1 and 3 in (a) are redundant implicants
�No redundant implicants in (b)

December 2006 N.J. Rao M2L3 30

K-map minimisation

� Find the smallest set of prime implicants that
includes all the essential prime implicants

� If there is a choice, the simpler prime implicant
should be chosen.

December 2006 N.J. Rao M2L3 31

Example 1

Implicants
X1 = C/D/ X9 = B/C/D/

X2 = B/C/ X10 = A/C/D/

X3 = BD/ X11 = AC/D/

X4 = ACD X12 = AB/D
X5 = AB/C/ X13 = ABC
X6 = BCD/ X14 = A/BD/

X7 = A/B/C/ X15 = ABD/

X8 = BC/D/ X16 = B/C/D
All are not prime implicants
X2, X3 and X4 are essential
prime implicants

December 2006 N.J. Rao M2L3 32

Combination 1

F1 = X1 + X4 + X6 + X16

�

�

$

%

'

&

�

�

�

�

�

�

� �

��

�

�

��

;��

;�

;�

;�

December 2006 N.J. Rao M2L3 33

Combination 2

�

�

$

%

'

&

�

�

�

�

�

�

� �

��

�

�

��

;�

;�

;�

;�

;�

F1 = X4 + X5 + X6 + X7 + X8

December 2006 N.J. Rao M2L3 34

Combination 3

�

�

$

%

'

&

�

�

�

�

�

�

� �

��

�

�

��

;�

;�

;�

F1 = X2 + X3 + X4

December 2006 N.J. Rao M2L3 35

Combination 4

F1 = X10 + X11 + X8 + X4 + X6

�

�

$

%

'

&

�

�

�

�

�

�

� �

��

�

�

��

;��
;��

;��

;�

;�

December 2006 N.J. Rao M2L3 36

Example 1: Minimization

Smallest set of prime implicants that includes
all the essential prime implicants

F1 = X2 + X3 + X4

December 2006 N.J. Rao M2L3 37

Example

Three sets of prime implicants
(a) X1 = B/D/ X2 = A/B X3 = BD X4 = ACD
(b) X4 = ACD X5 = AB/D/ X6 = A/B/D/ X7 = ABD X8 = A/BC

X9 = A/BC/

(c) X7 = ABD X10 = B/C/D/ X11 = A/C/D/ X12 = A/BD
X13 = A/C/D/ X14 = AB/C

December 2006 N.J. Rao M2L3 38

Example (2)

December 2006 N.J. Rao M2L3 39

Some simplified expressions

F = X1 + X2 + X3 + X4
= X4 + X6 + X7 + X8 + X9
= X7 + X10 + X11 + X12 + X13 + X14

December 2006 N.J. Rao M2L3 40

Standard POS form from K- map
(Example)

December 2006 N.J. Rao M2L3 41

Four implicants are identified
� Implicant 1 and it is represented by (A + B/)
� Implicant 2 is represented by (B/ + D/)
� Implicant 3 is represented by (B + D)
� Implicant 4 is represented by (A/ + C/ + D/)
The simplified expression in the POS form is given by;

F = (A + B/) . (B/ + D/) . (B + D) . (A/ + C/ + D/)
If we choose the implicant 5 instead of 4, the simplified

expression
F = (A + B/) . (B/ + D/).(B + D).(A/ + B +C/)

December 2006 N.J. Rao M2L3 42

Minimization procedure

1.Draw the K-map with 2n cells, where n is the
number of variables in a Boolean function.

2.Fill in the K-map with 1s and 0s as per the
function given in the algebraic form (SOP or
POS) or truth-table form.

December 2006 N.J. Rao M2L3 43

Minimization procedure (2)

3. Determine the set of prime implicants that consist of all
the essential prime implicants as per the criteria:
� All the 1-entered or 0-entered cells are covered by a

set of implicants, while making the number of cells
covered by each implicant as large as possible.

� Eliminate the redundant implicants.
� Identify all the essential prime implicants.
� Whenever there is a choice among the prime

implicants select the prime implicant with the
smaller number of literals.

December 2006 N.J. Rao M2L3 44

Minimization procedure (3)

4. If the final expression is to be generated in SOP
form, the prime implicants should be identified
by suitably grouping the positionally adjacent
1-entered cells, and converting each of the
prime implicant into a product term. The final
SOP expression is the OR of all the product
terms.

December 2006 N.J. Rao M2L3 45

Minimization procedure (4)

5. If the final simplified expression is to be given
in the POS form, the prime implicants should
be identified by suitably grouping the
positionally adjacent 0-entered cells, and
converting each of the prime implicant into a
sum term. The final POS expression is the
AND of all sum terms.

December 2006 N.J. Rao M2L3 46

Incompletely specified functions

All Boolean functions are not always completely specified
Consider the BCD decoder,
� Only 10 outputs are decoded from 16 possible input

combinations
� The six invalid combinations of the inputs never occur
� We don�t-care what the output is for any of these

combinations that should never occur
� These don�t-care situations can be used advantageously in

generating a simpler Boolean expression
� Such don�t-care combinations of the variables are

represented by an "X" in the appropriate cell of the K-map

December 2006 N.J. Rao M2L3 47

Example

The decoder has three inputs A, B and C and
an output F

Input from keyboard
Input from mouse
Input from light-pen
Output to printer
Output to plotter

0
0
0
1
1

0 0 1
0 1 0
0 1 1
1 0 0
1 0 1

1
2
3
4
5

DescriptionOutputInput CodeMode No

December 2006 N.J. Rao M2L3 48

Truth-table and K-map with don�t
cares

X11

X011

1

1101

1001

0110

0010

0100

X000

FCBA

Using the three don�t care conditions

K-map

December 2006 N.J. Rao M2L3 49

SOP and POS forms

F = S (4, 5) + d (0, 6, 7)
F = P (1, 2, 3) . d (0, 6, 7)
� The term d (0, 6, 7) represent the don�t-care terms.
� Xs can be treated either as 0s or as 1s depending on the
convenience

F = A
F = AB/

December 2006 N.J. Rao M2L3 50

Example

F = S (0,1,4,8,10,11,12) + d(2,3,6,9,15)

The simplified expression F = B/ + C/D/

December 2006 N.J. Rao M2L3 51

Multiple functions in same set of
variables

F1(A,B,C) = (0, 3, 4, 5, 6); F2(A,B,C) = (1, 2, 4, 6, 7);
F3(A,B,C) = (1, 3, 4, 5, 6)

The resultant minimal expressions
F1 = B/C/ + AC/ + AB/ + A/BC
F2 = BC/ + AC/ + AB + A/B/C
F3 = AC/ + B/C + A/C

These functions have nine product terms and twenty one literals

December 2006 N.J. Rao M2L3 52

Multiple functions in same set of
variables (2)

Minor modifications to these expressions lead to
F1 = B/C/ + AC/ + AB/ + A/BC
F2 = BC/ + AC/ + AB + A/B/C
F3 = AC/ + AB/ + A/BC + A/B/C
This leads to seven product terms and sixteen literals

F1
A

C

B

1

0 1

1

1

10

0

F2

1 1 1

1 10

0

0

A

B

C

F3

1 1

1 1 1

0 0

0

A

B

C

Karnaugh-Map

The expressions for a logical function (right hand side of a function) can be very long

and have many terms and each term many literals. Such logical expressions can be

simplified using different properties of Boolean algebra. This method of minimization

requires our ability to identify the patterns among the terms. These patterns should

conform to one of the four laws of Boolean algebra. However, it is not always very

convenient to identify such patterns in a given expression. If we can represent the

same logic function in a graphic form that allows us to identify the inherent patterns,

then the simplification can be performed more conveniently.

Karnaugh Map is one such graphic representation of a Boolean function in the form

of a map. Karnaugh Map is due to M. Karnaugh, who introduced (1953) his version

of the map in his paper "The Map Method for Synthesis of Combinational Logic

Circuits". Karnaugh Map, abbreviated as K-map, is actually pictorial form of the

truth-table. This Learning Unit is devoted to the Karnaugh map and its method of

simplification of logic functions.

Karnaugh map of a Boolean function is graphical arrangement of minterms, for which

the function is asserted.

We can begin by considering a two-variable logic function,

 F = A/B + AB

Any two-variable function has 22 = 4 minterms. The truth table of this function is

A B F
0
0
1
1

0
1
0
1

0
1
1
0

It can be seen that the values of the variables are arranged in the ascending order

(in the numerical decimal sense).

We consider that any two terms are logically adjacent if they differ only with respect

any one variable.

For example ABC is logically adjacent to A/BC, AB/C and ABC/. But it is not logically

adjacent to A/B/C, A/BC/, A/B/C/, AB/C/.

The entries in the truth-table that are positionally adjacent are not logically adjacent.

For example A/B (01) and AB/ (10) are postionally adjacent but are not logically

adjacent. The combination of 00 is logically adjacent to 01 and 10. Similarly 11 is

adjacent to 10 and 01. Karnaugh map is a method of arranging the truth-table

entries so that the logically adjacent terms are also physically adjacent.

The K-map of a two-variable function is shown in the figure. There are two popular

ways of representing the map, both of which are shown in the figure. The

representation, where the variable above the column or on the side of the row in

which it is asserted, will be followed in this and the associated units.

 There are four cells (squares) in this map.

 The cells labelled as 0, 1, 2 and 3 represent the four minterms m0, m1, m2 and

m3.

 The numbering of the cells is chosen to ensure that the logically adjacent

minterms are positionally adjacent.

 Cell 1 is adjacent to cell 0 and cell 3, indicating the minterm m1 (01) is logically

adjacent to the minterm m0 (00) and the minterm m3 (11).

 The second column, above which the variable A is indicated, has the cells 2 and 3

representing the minterms m2 and m3. The variable A is asserted in these two

minterms.

Let us define the concept of position adjacency. Position adjacency means two

adjacent cells sharing one side. Such an adjacency is called simple adjacency. Cell 0

is positionally adjacent to cell 1 and cell 2, because cell 0 shares one side with each

of them. Similarly, cell 1 is positionally adjacent to cell 0 and cell 3, as cell 2 is

adjacent to cell 0 and cell 3, and cell 3 is adjacent to cell 1 and cell 2.

There are other kinds of positional adjacencies, which become relevant when the

number of variables is more than 3. We will explore them at a later time.

The main feature of the K-map is that by merely looking at the position of a cell, it is

possible to find immediately all the logically adjacent combinations in a function.

The function F = (A/B + AB) can now be incorporated into the K-map by entering "1"

in cells represented by the minterms for which the function is asserted. A "0" is

entered in all other cells. K-map for the function F is

You will notice that the two cells in which "1" is entered are not positionally adjacent.

Therefore, they are not logically adjacent.

Consider another function of two variables.

 F = A/B + AB

The K-map for this function is

You will notice that the cells in which "1" is entered are positionally adjacent and

hence are logically adjacent.

Three-Variable Karnaugh Map:

K-map for three variables will have 23 = 8 cells as shown in the figure.

The cells are labelled 0,1,..,7, which stand for combinations 000, 001,...,111

respectively. Notice that cells in two columns are associated with assertion of A, two

columns with the assertion of B and one row with the assertion of C.

Let us consider the logic adjacency and position adjacency in the map.

 Cell 7 (111) is adjacent to the cells 3 (011), 5 (101) and 6 (110).

 Cell 2 (010) is adjacent to the cell 0 (000), cell 6 (110) and cell 3 (011).

 We know from logical adjacency the cell 0 (000) and the cell 4 (100) should also

be adjacent. But we do not find them positionally adjacent. Therefore, a new

adjacency called "cyclic adjacency" is defined to bring the boundaries of a row or

a column adjacent to each other. In a three-variable map cells 4 (100) and 0

(000), and cells 1 (001) and 5 (101) are adjacent. The boundaries on the

opposite sides of a K-map are considered to be one common side for the

associated two cells.

Adjacency is not merely between two cells. Consider the following function:

 F = Σ (1, 3, 5, 7)

 = m1 + m3 + m5 + m7

 = A'B'C + A'BC + AB'C + ABC

 = A'C(B'+B) + AC(B'+B)

 = A'C + AC

 = (A'+A)C

 = C

The K-map of the function F is

It is shown clearly that although there is no logic adjacency between some pairs of

the terms, we are able to simplify a group of terms. For example A/B/C, ABC, A/BC

and AB/C are simplified to result in an expression "C". A cyclic relationship among

the cells 1, 3, 5 and 7 can be observed on the map in the form 1 3 7 5 1

(" " indicating "adjacent to"). When a group of cells, always 2i (i < n) in number,

are adjacent to one another in a sequential manner those cells are considered be

cyclically adjacent.

Other groups of cells with ‘cyclic adjacency’

 0, 1, 3 and 2

 2, 3, 7 and 6

 6, 7, 5 and 4

 4, 5, 1 and 0

 0, 2, 6 and 4

So far we noticed two kinds of positional adjacencies:

 Simple adjacency

 Cyclic adjacency (It has two cases, one is between two cells, and the other

among a group of 2i cells)

Four-variable Karnaugh Map: A four-variable (A, B, C and D) K-map will have 24

= 16 cells.

These cells are labelled 0, 1,..., 15, which stand for combinations 0000, 0001,...1111

respectively. Notice that the two sets of columns are associated with assertion of A

and B, and two sets of rows are associated with the assertion of C and D.

We will be able to observe both simple and cyclic adjacencies in a four-variable map

also. 4, 8 and 16 cells can form groups with cyclic adjacency. Some examples of

such groups are

 0, 1, 5 and 4

 0, 1, 3 and 2

 10, 11, 9 and 8

 14, 12,13 and15

 14, 6, 7 and 15

 3, 7, 15, 11, 10, 14, 6 and 2

Consider a function of four variables

 F = Σ (2, 3, 8, 9, 11, 12)

The K-map of this function is

Five-variable Karnaugh Map: Karnaugh map for five variables

 It has 25 = 32 cells labelled as 0,1, 2 ...,31, corresponding to the 32

combinations from 00000 to 11111.

 The map is divided vertically into two symmetrical parts. Variable A is not-

asserted on the left side, and is asserted on the right side. The two parts of the

map, except for the assertion or non-assertion of the variable A are identical with

respect to the remaining four variables B, C, D and E.

 Simple and cyclic adjacencies are applicable to this map, but they need to be

applied separately to the two sections of the map. For example cell 8 and cell 0

are adjacent. The largest number of cells coming under cyclic adjacency can go

up to 25 = 32.

 Another type of adjacency, called ‘symmetric adjacency’, exists because of the

division of the map into two symmetrical sections. Taking the assertion and non-

assertion of A into account, we find that cell 0 and cell 16 are adjacent. Similarly

there are 15 more adjacent cell pairs (4-20, 12-28, 8-24, 1-17, 5-21, 13-29, 9-

25, 3-19, 7-23, 15-31, 11-27, 2-18, 6-22, 14-30, and 10-26).

Consider a function of five-variable

F = A/BC/DE/ + A/BCDE/ + A/BC/DE + ABCDE + A/BC/D/E + ABC/DE/ + ABCDE/

 + ABC/DE + ABC/D/E + ABC/D/E/

From the study of two-, three-, four- and five-variable Karnaugh maps, we can

summarise the following properties:

1. Every Karnaugh map has 2n cells corresponding to 2n minterms.

2. The main feature of a Karnaugh Map is to convert logic adjacency into

positional adjacency.

3. There are three kinds of positional adjacency, namely simple, cyclic and

symmetric.

We have already seen how a K-map can be prepared provided the Boolean function

is available in the canonical SOP form.

A "1" is entered in all those cells representing the minterms of the expression, and

"0" in all the other cells.

However, the Boolean functions are not always available to us in the canonical form.

One method is to convert the non-canonical form into canonical SOP form and

prepare the K-map. The other method is to convert the function into the standard

SOP form and directly prepare the K-map.

Consider the function

 F = A/B + A/B/C/ + ABC/D + ABCD/

We notice that there are four variables in the expression. The first term, A/B,

containing two variables actually represents four minterms, and the term A/B/C/

represents two minterms. The K-map for this function is

A

D

B

C

1 1 0 0

1 1 1 0

0 1 0 0

 0 1 1 0

Notice that the second column represents A/B, and similarly A/B/C/ represents the

two top cells in the first column. With a little practice it is always possible to fill the

K-map with 1s representing a function given in the standard SOP form.

Boolean functions in POS form

Boolean functions, sometimes, are also available in POS form. Let us assume that

the function is available in the canonical POS form. Consider an example of such a

function

 F = Π (0, 4, 6, 7, 11, 12, 14, 15)

In preparing the K-map for the function given in POS form, 0s are filled in the cells

represented by the maxterms. The K-map of the above function is

Sometimes the function may be given in the standard POS form. In such situations

we can initially convert the standard POS form of the expression into its canonical

form, and enter 0s in the cells representing the maxterms. Another procedure is to

enter 0s directly into the map by observing the sum terms one after the other.

Consider an example of a Boolean function given in the POS form.

 F = (A+B+D/).(A/+B+C/+D).(B/+C)

This may be converted into its canonical form as

F = (A+B+C+D/).(A+B+C/+D/)(A/+B+C/+D).(A+B/+C+D). (A/+B/+C+D).

 (A+B/+C+D/).(A/+B/+C+D/)

 = M1 . M3 . M10 . M4 . M12 . M5 . M13

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in them while the remaining

cells are filled with 1s.

The second method is through direct observation. To determine the maxterms

associated with a sum term we follow the procedure of associating a 0 with those

variables which appear in their asserted form, and a 1 with the variables that appear

in their non-asserted form. For example the first term (A+B+D/) has A and B

asserted and D non-asserted. Therefore the two maxterms associated with this sum

term are 0001 (M1) and 0011 (M3). The second term is in its canonical form and the

maxterm associated with is 1010 (M10). Similarly the maxterms associated with the

third sum term are 0100 (M4), 1100 (M12), 0101 (M5) and 1101 (M13). The resultant

K-map is

We learnt in this Learning Unit

 The logic adjacency is captured as positional adjacency in a Karnaugh Map

 How to translate logic expressions given in SOP or POS forms into K-maps

 There are three types of logical adjacency, namely, simple, cyclic and symmetric

adjacencies

Minimization with Karnaugh Map

Implicants: A Karnaugh map not only includes all the minterms that represent a Boolean

function, but also arranges the logically adjacent terms in positionally adjacent cells. As the

information is pictorial in nature, it becomes easier to identify any patterns (relations) that

exist among the 1-entered cells (minterms). These patterns or relations are referred to as

implicants.

Definition 1: An implicant is a group of 2i (i = 0, 1n) minterms (1-entered cells) that

are logically (positionally) adjacent.

A study of implicants enables us to use the K-map effectively for simplifying a Boolean

function. Consider the K-map

 There are four implicants: 1, 2, 3 and 4.

 The implicant 4 is a single cell implicant. A single cell implicant is a 1-entered cell

that is not positionally adjacent to any of the other cells in map.

 The four implicants account for all groupings of 1-entered cells. This also means that

the four implicants describe the Boolean function completely.

An implicant represents a product term, with the number of variables appearing in the term

inversely proportional to the number of 1-entered cells it represents.

 Implicant 1 in the figure represents the product term AC/

 Implicant 2 represents ABD

 Implicant 3 represents BCD

 Implicant 4 represents A/B/CD/

The smaller the number of implicants, and the larger the number of cells that each

implicant represents, the smaller the number of product terms in the simplified Boolean

expression.

In this example we notice that there are different ways of identifying the implicants.

Five implicants are identified in the figure (a) and three implicants in the figure (b) for the

same K-map (Boolean function). It is then necessary to have a procedure to identify the

minimum number of implicants to represent a Boolean function.

We identify three types of implicants: "prime implicant", "essential implicant" and

"redundant implicant".

A prime implicant is one that is not a subset of any one of the other implicant.

An essential prime implicant is a prime implicant which includes a 1-entered cell that is

not included in any other prime implicant.

A redundant implicant is one in which all the 1-entered cells are covered by other

implicants. A redundant implicant represents a redundant term in an expression.

Implicants 2, 3, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are prime

implicants.

Implicants 2, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are essential prime

implicants.

Implicants 1 and 3 in the figure (a) are redundant implicants.

Figure (b) does not have any redundant implicants.

Now the method of K-map minimisation can be stated as

"find the smallest set of prime implicants that includes all the essential prime

implicants accounting for all the 1-entered cells of the K-map".

If there is a choice, the simpler prime implicant should be chosen. The minimisation

procedure is best understood through examples.

Example 1: Find the minimised expression for the function given by the K-map in the

figure.

Fifteen implicants of the K-map are:

 X1 = C/D/ X2 = B/C/ X3 = BD/ X4 = ACD

 X5 = AB/C/ X6 = BCD/ X7 = A/B/C/ X8 = BC/D/

 X9 = B/C/D/ X10 = A/C/D/ X11 = AC/D/ X12 = AB/D

 X13 = ABC X14 = A/BD/ X15 = ABD/ X16 = B/C/D

Obviously all these implicants are not prime implicants and there are several redundant

implicants. Several combinations of prime implicants can be worked out to represent the

function. Some of them are listed in the following.

 F1 = X1 + X4 + X6 + X16

 = X4 + X5 + X6 + X7 + X8

 = X2 + X3 + X4

 = X10 + X11 + X8 + X4 + X6

The k-maps with these four combinations are

Among the prime implicants listed in the figure there are three implicants X1, X2 and X3

that group four 1-entered cells. Selecting the smallest number of implicants we obtain the

simplified expression as:

 F = X2 + X3 + X4

 = B/C/ + BD/ + ACD

It may be noticed that X2, X3 and X4 are essential prime implicants.

Example 2: Minimise the Boolean function represented by the K-map shown in the figure.

Three sets of prime implicants are:

 (a) X1 = B/D/ X2 = A/B X3 = BD X4 = ACD

 (b) X4 = ACD X5 = AB/D/ X6 = A/B/D/ X7 = ABD

 X8 = A/BC X9 = A/BC/

 (c) X7 = ABD X10 = B/C/D/ X11 = A/C/D/ X12 = A/BD

 X13 = A/C/D/ X14 = AB/C

Some of the simplified expressions are shown in the following:

 F = X1 + X2 + X3 + X4

 = X4 + X6 + X7 + X8 + X9

 = X7 + X10 + X11 + X12 + X13 + X14

Standard POS form from Karnaugh Map

As mentioned earlier, POS form always follows some kind of duality, yet different from the

principle of duality. The implicants are defined as groups of sums or maxterms which

in the map representation are the positionally adjacent 0-entered cells rather then 1-

entered cells as in the SOP case. When converting an implicant covering some 0-entered

cells into a sum, a variable appears in complemented form in the sum if it is always 1

in value in the combinations corresponding to that implicant, a variable appears in

uncomplimented form if it is always 0 in value, and the variable does not appear at all if

it changes its values in the combinations corresponding to the implicant. We obtain a

standard POS form of expression from the map representation by ANDing all the sums

converted from implicants.

Example 3: Consider a Boolean function in the POS form represented in the K-map shown

in the figure

 Initially four implicants are identified (1, 2, 3 and 4).

 Implicant 1: B is asserted and A is not-asserted in all the cells of implicant 1, where as

the variables C and D change their values from 0 to 1. It is represented by the sum

term (A + B/).

 Implicant 2: It is represented by the sum term (B/ + D/).

 Implicant 3: It is represented by (B + D).

 Implicant 4: It is represented by (A/ + C/ + D/).

The simplified expression in the POS form is given by;

 F = (A + B/) . (B/ + D/) . (B + D) . (A/ + C/ + D/)

If we choose the implicant 5 (shown by the dotted line in the figure 19) instead of 4,

the simplified expression gets modified as:

 F = (A + B/) . (B/ + D/).(B + D).(A/ + B +C'/)

We may summarise the procedure for minimization of a Boolean function through a K-map

as follows:

1. Draw the K-map with 2n cells, where n is the number of variables in a Boolean function.

2. Fill in the K-map with 1s and 0s as per the function given in the algebraic form (SOP or

POS) or truth-table form.

3. Determine the set of prime implicants that consist of all the essential prime implicants

as per the following criteria:

 All the 1-entered or 0-entered cells are covered by the set of implicants, while

making the number of cells covered by each implicant as large as possible.

 Eliminate the redundant implicants.

 Identify all the essential prime implicants.

 Whenever there is a choice among the prime implicants select the prime

implicant with the smaller number of literals.

4. If the final expression is to be generated in SOP form, the prime implicants should be

identified by suitably grouping the positionally adjacent 1-entered cells, and converting

each of the prime implicant into a product term. The final SOP expression is the OR of

the identified product terms.

5. If the final simplified expression is to be given in the POS form, the prime implicants

should be identified by suitably grouping the positionally adjacent 0-entered

cells, and converting each of the prime implicant into a sum term. The final POS

expression is the AND of the identified sum terms.

Simplification of Incompletely Specified Functions

So far we assumed that the Boolean functions are always completely specified, which

means a given function assumes strictly a specific value, 1 or 0, for each of its 2n

input combinations. This, however, is not always the case.

Consider the example is the BCD decoders

 The ten outputs are decoded from sixteen possible input combinations produced by

four inputs representing BCD codes.

 An encoding scheme chooses ten valid codes.

 Irrespective of the encoding scheme there are always six combinations of the inputs

that would be considered as invalid codes.

 If the input unit to the BCD decoder works in a functionally correct way, then the six

invalid combinations of the inputs should never occur.

In such a case, it does not matter what the output of the decoder is for these six

combinations. As we do not mind what the values of the outputs are in such situations, we

call them "don’t-care" situations. These don’t-care situations can be used advantageously in

generating a simpler Boolean expression than without taking that advantage.

Such don’t-care combinations of the variables are represented by an "X" in the appropriate

cell of the K-map.

Example: This example shows how an incompletely specified function can be represented

in truth-table, Karnaugh map and canonical forms.

The decoder has three inputs A, B and C representing three bit codes and an output F. Out

of the 23 = 8 possible combinations of the inputs, only five are described and hence

constitute the valid codes. F is not specified for the remaining three input codes, namely,

000, 110 and 111.

Functional description of a decoder

Mode No Input Code Output Description
1
2
3
4
5

 0 0 1
 0 1 0
 0 1 1
 1 0 0
 1 0 1

0
0
0
1
1

Input from keyboard
Input from mouse
Input from light-pen
Output to printer
Output to plotter

Treating these three combinations as the don’t-care conditions, the truth-table may be

written as:

A B C F
0 0 0 X
0 0 1 0
0 1 0 0

0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 X
1 1 1 X

The K-map for this function is

The function in the SOP and POS forms may be written as

 F = Σ(4, 5) + d (0, 6, 7)

 F = Π (1, 2, 3) . d (0, 6, 7)

The term d (0, 6, 7) represents the collection of don’t-care terms.

The don’t-cares bring some advantages to the simplification of Boolean functions. The Xs

can be treated either as 0s or as 1s depending on the convenience. For example the above

map can be redrawn in two different ways as

The simplification can be done, therefore, in two different ways. The resulting expressions

for the function F are:

 F = A

 F = AB/

We can generate a simpler expression for a given function by utilising some of the don’t-

care conditions as 1s.

Example: Simplify F = Σ (0,1,4,8,10,11,12) + d(2,3,6,9,15)

The K-map of this function is

 The simplified expression taking the full advantage of the don’t cares is,

 F = B/ + C/D/

Simplification of several functions of the same set of variables

As there could be several product terms that could be made common to more than one

function, special attention needs to be paid to the simplification process.

Example: Consider the following set of functions defined on the same set of variables:

 F1 (A, B, C) = Σ (0, 3, 4, 5, 6)

 F2 (A, B, C) = Σ (1, 2, 4, 6, 7)

 F3 (A, B, C) = Σ (1, 3, 4, 5, 6)

Let us first consider the simplification process independently for each of the functions. The

K-maps for the three functions and the groupings are

The resultant minimal expressions are:

 F1 = B/C/ + AC/ + AB/ + A/BC

 F2 = BC/ + AC/ + AB + A/B/C

 F3 = AC/ + B/C + A/C

These three functions have nine product terms and twenty one literals.

If the groupings can be done to increase the number of product terms that can be shared

among the three functions, a more cost effective realisation of these functions can be

achieved. One may consider, at least as a first approximation, cost of realising a function

is proportional to the number of product terms and the total number of literals present in

the expression. Consider the minimisation shown in the figure

The resultant minimal expressions are;

 F1 = B/C/ + AC/ + AB/ + A/BC

 F2 = BC/ + AC/ + AB + A/B/C

 F3 = AC/ + AB/ + A/BC + A/B/C

This simplification leads to seven product terms and sixteen literals.

Digital Electronics
Module 2: Quine-McCluskey Method

N.J. Rao
Indian Institute of Science

id5097289 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J. Rao M2L4 2

Motivation

� Map methods unsuitable if the number of variables is
more than six

� Quine formulated the concept of tabular minimisation in
1952

� Improved by McClusky in 1956
Quine-McClusky method
� Can be performed by hand, but tedious, time-consuming

and subject to error
� Better suited to implementation on a digital computer

December 2006 N.J. Rao M2L4 3

Principle of Quine-McCusky Method

Quine-McClusky method is a two stage simplification process
Step 1: Prime implicants are generated by a special

tabulation process
Step 2: A minimal set of implicants is determined

December 2006 N.J. Rao M2L4 4

Tabulation

� List the specified minterms for the 1s of a function and
don�t-cares

� Generate all the prime implicants using logical
adjacency (AB/ + AB = A)

One can work with the equivalent binary number of the
product terms.

Example: A/BCD/ and A/BC/D/ are entered as
0110 and 0100
Combined to form a term �01-0�

December 2006 N.J. Rao M2L4 5

Creation of Prime Implicant Table

� Selected prime implicants are combined and arranged
in a table

December 2006 N.J. Rao M2L4 6

Example 1
F = S (1,2,5,6,7,9,10,11,14)
The minterms are tabulated as binary numbers in

sectionalised format.

7
11
14

3 0111
1011
1110

3

5
6
9

10

2 0101
0110
1001
1010

2

1
2

1 0001
0010

1

DecimalColumn 1
No.of 1s Binary

Section

December 2006 N.J. Rao M2L4 7

Example 1 (2)

� Compare every binary number in each section with
every binary number in the next section

� Identify the combinations where the two numbers differ
from each other with respect to only one bit.

� Combinations cannot occur among the numbers
belonging to the same section

� Example: 0001 (1) in section 1 can be combined with

0101 (5) in section 2 to result in 0-01 (1, 5).

December 2006 N.J. Rao M2L4 8

Example 1 (3)

� The results of such combinations are entered into
another column

� The paired entries are checked off
� The entries of one section in the second column can

again be combined together with entries in the next
section

� Continue this process

December 2006 N.J. Rao M2L4 9

Example 1 (4)

3 0111  7
1011  11
1110  14

3

01-1 (5,7)
011- (6,7)
-110 (6,14) 
10-1 (9,11)
101- (10,11)
1-10 (10,14) 

2 0101  5
0110  6
1001  9
1010  10

2

--10 (2,6,10,14)
--10 (2,10,6,14)

1-01 (1,5)
-001 (1,9)
0-10 (2,6) 
-010 (2,10) 

1 0001  1
0010  2

1

Column 3Column 2Column 1
No.of 1s Binary Decimal

Section

Note: Combination of entries in column 2 can only take place if the
corresponding entries have the dashes at the same place.

December 2006 N.J. Rao M2L4 10

Example 1 (5)

� All those terms which are not checked off constitute the
set of prime implicants

� The repeated terms should be eliminated (--10 in the
column 3)

� The seven prime implicants:(1,5), (1,9), (5,7), (6,7),
(9,11), (10,11), (2,6,10,14)

� This is not a minimal set of prime implicants
� The next stage is to determine the minimal set of prime

implicants

December 2006 N.J. Rao M2L4 11

December 2006 N.J. Rao M2L4 12

Selection of minimal set of implicants

� Determine essential prime implicants
� These are the minterms not covered by any other prime

implicant Identified by columns that have only one asterisk
� Columns 2 and 14 have only one asterisk each
� The associated row, CD/, is an essential prime implicant.
� CD/ is selected as a member of the minimal set (mark it by an

asterisk)
� Remove the corresponding columns, 2, 6, 10, 14, from the prime

implicant table

� A new table is prepared.

December 2006 N.J. Rao M2L4 13

Selection of minimal set of
implicants (2)

December 2006 N.J. Rao M2L4 14

Dominating Prime Implicants

� Identified by the rows that have more asterisks than
others

� Choose Row A/BD
� Includes the minterm 7, which is the only one included in

the row represented by A/BC
� A/BD is dominant implicant over A/BC
� A/BC can be eliminated
� Mark A/BD by an asterisk
� Check off the columns 5 and 7

December 2006 N.J. Rao M2L4 15

Dominating Prime Implicants (2)

Choose AB/D
 Dominates over the row AB/C
 Mark the row AB/D by an asterisk
 Eliminate the row AB/C
 Check off columns 9 and 11

Select A/C/D
 Dominates over B/C/D.
 B/C/D also dominates over A/C/D
 Either B/C/D or A/C/D can be chosen as the dominant

prime implicant

December 2006 N.J. Rao M2L4 16

Minimal SOP expression

� If A/C/D is retained as the dominant prime implicant
F = CD/ + A/C/D + A/BD + AB/D

� If B/C/D is chosen as the dominant prime implicant
F = CD/ + B/C/D + A/BD + AB/D

� The minimal expression is not unique

December 2006 N.J. Rao M2L4 17

Types of implicant tables

� Cyclic prime implicant table
� Semi-cyclic prime implicant table
A prime implicant table is cyclic if
� it does not have any essential implicants which implies

(at least two asterisks in every column)
� there are no dominating implicants (same number of

asterisks in every row

December 2006 N.J. Rao M2L4 18

Example: Cyclic prime implicants

F = S (0,1,3,4,7,12,14,15)

December 2006 N.J. Rao M2L4 19

Example: Possible Prime Implicants

a = A/B/C/ (0,1) e = ABC (14,15)
b = A/B/D (1,3) f = ABD/ (12,14)
c = A/CD (3,7) g = BC/D/ (4,12)
d = BCD (7,15) h = A/C/D/ (0,4)

December 2006 N.J. Rao M2L4 20

Example: Prime implicant table

December 2006 N.J. Rao M2L4 21

Process of simplification

� All columns have two asterisks
� There are no essential prime implicants.
� Choose any one of the prime implicants to start with
� Start with prime implicant a (mark with asterisk)
� Delete corresponding columns, 0 and 1
� Row c becomes dominant over row b, delete row b
� Delete columns 3 and 7
� Row e dominates row d, and row d can be eliminated
� Delete columns 14 and 15
� Choose row g it covers the remaining asterisks

associated with rows h and f

December 2006 N.J. Rao M2L4 22

Example: Reduced Prime Implicants
Table

F

G

H

I

J

K

 �����

������

�������

�������

������

�����

�� � �� �� ��

[[

[[

[[

[[

[[

[

�D�

H

I

J

K

�������

�������

������

�����

� �� �� ��

[[

[[

[[

[

�E�

December 2006 N.J. Rao M2L4 23

Example: Simplified Expression

F = a + c + e + g
= A/B/C/ + A/CD + ABC + BC/D/

The K-map of the simplified function

December 2006 N.J. Rao M2L4 24

Semi-cyclic prime implicant table

� The number of minterms covered by each prime
implicant is identical in cyclic function

� Not necessarily true in a semi-cyclic function

December 2006 N.J. Rao M2L4 25

Example: Semi-cyclic Prime Implicant
Table (Function of 5 variables)

x

(0,2,8,10)

(0,2,16,18)

(8,9,10,11)

(16,17,18,19)

(11,15)

(15,31)

(23,31)

(19,23)

(17,25)

(25,9)

x

a

b

c

e

d

g

h

i

j

k

0 2 8 9 10 11 15 16 17 18 19 23 25 31

x

x x x x

x x

x x x x

x x x x

xx

x x

xx

x x

x x

x

December 2006 N.J. Rao M2L4 26

Example: Semi-cyclic Prime Implicant
Table (Function of 5 variables) (2)

Minimised Function
F = a + c + d + e + h + j

or F = a + c + d + g + h + j
or F = a + c + d + g + j + i
or F = a + c + d + g + i + k

December 2006 N.J. Rao M2L4 27

Simplification of Incompletely Specified
Functions

� Do the initial tabulation including the don�t-cares
� Construct the prime implicant table
� Columns associated with don�t-cares need not be

included
� Further simplification is similar to that for completely

specified functions

December 2006 N.J. Rao M2L4 28

Example

F(A,B,C,D,E) =(1,4,6,10,20,22,24,26) +
d(0,11,16,27)

� Pay attention to the don�t-care terms
� Mark the combinations among themselves (d)

December 2006 N.J. Rao M2L4 29

Primary Implicant Table

-0-00 (0,4,16,20)
-0-00 (0,16,4,20)

-01-0 (4,6,20,22)
-01-0 (4,20,6,22)

-101- (10,26,11,27)
-101- (10,11,26,27)

0000- (0,1)
00-00 (0,4) 
-0000 (0,16) (d)

001-0 (4, 6) 
-0100 (4,20) 
10-00 (16,20) 
1-000 (16,24) 

-0110 (6,22) 
-1010 (10,26) 
0101- (10,11) 
101-0 (20,22) 
110-0 (24,26)

1101- (26,27) 
-1011 (11,27) 

0 

1 
4 

16 

6 
10 
20 
24 

22 
26 
11 

27 

00000 (d)

00001
00100
10000 (d)

00110
01010
10100
11000

10110
11010
01011 (d)

11011 (d)

December 2006 N.J. Rao M2L4 30

Prime Implicant Table

a

b

c

d

e

g

x

(0,1)

(16,24)

(24,26)

(0,4,6,23)

(4,6,20,22)

(10,11,26,27)

1 4 6 10 20 22 24 26

x

x x

x x

x x x x

x x

Don�t-cares are not included

December 2006 N.J. Rao M2L4 31

Minimal expression

F(A,B,C,D,E) = a + c + e + g
= A/B/C/D/ + ABC/E/ + B/CE/ + BC/D

Quine-McCluskey Method of Minimization

Karnaugh Map provides a good method of minimizing a logic function. However, it depends

on our ability to observe appropriate patterns and identify the necessary implicants. If the

number of variables increases beyond five, K-map or its variant Variable Entered Map can

become very messy and there is every possibility of committing a mistake. What we

require is a method that is more suitable for implementation on a computer, even if it is

inconvenient for paper-and-pencil procedures. The concept of tabular minimisation was

originally formulated by Quine in 1952. This method was later improved upon by

McClusky in 1956, hence the name Quine-McClusky.

This Learning Unit is concerned with the Quine-McClusky method of minimisation. This

method is tedious, time-consuming and subject to error when performed by hand. But it is

better suited to implementation on a digital computer.

Principle of Quine-McClusky Method

The Quine-McClusky method is a two stage simplification process.

 Generate prime implicants of the given Boolean function by a special tabulation

process.

 Determine the minimal set of implicants is determined from the set of implicants

generated in the first stage.

The tabulation process starts with a listing of the specified minterms for the 1s (or 0s)

of a function and don’t-cares (the unspecified minterms) in a particular format. All the

prime implicants are generated from them using the simple logical adjacency theorem,

namely, AB/ + AB = A. The main feature of this stage is that we work with the equivalent

binary number of the product terms. For example in a four variable case, the minterms

A/BCD/ and A/BC/D/ are entered as 0110 and 0100. As the two logically adjacent

minterms A/BCD/ and A/BC/D/ can be combined to form a product term A/BD/,the two

binary terms 0110 and 0100 are combined to form a term represented as "01-0", where ‘-‘

(dash) indicates the position where the combination took place.

Stage two involves creating a prime implicant table. This table provides a means of

identifying, by a special procedure, the smallest number of prime implicants that represents

the original Boolean function. The selected prime implicants are combined to form the

simplified expression in the SOP form. While we confine our discussion to the creation of

minimal SOP expression of a Boolean function in the canonical form, it is easy to

extend the procedure to functions that are given in the standard or any other forms.

Generation of Prime Implicants

The process of generating prime implicants is best presented through an example.

Example 1: F = Σ (1,2,5,6,7,9,10,11,14)

2

All the minterms are tabulated as binary numbers in sectionalised format, so that each

section consists of the equivalent binary numbers containing the same number of 1s, and

the number of 1s in the equivalent binary numbers of each section is always more than that

in its previous section. This process is illustrated in the table as below.

Section Column 1
No. of 1s Binary

Decimal

1 1 0001
0010

1
2

2 2 0101
 0110
 1001
 1010

5
6
9
10

3 3 0111
 1011
 1110

7
11
14

The next step is to look for all possible combinations between the equivalent binary

numbers in the adjacent sections by comparing every binary number in each section with

every binary number in the next section. The combination of two terms in the adjacent

sections is possible only if the two numbers differ from each other with respect to only one

bit. For example 0001 (1) in section 1 can be combined with 0101 (5) in section 2 to result

in 0-01 (1, 5). Notice that combinations cannot occur among the numbers belonging to the

same section. The results of such combinations are entered into another column,

sequentially along with their decimal equivalents indicating the binary equivalents from

which the result of combination came, like (1, 5) as mentioned above. The second column

also will get sectionalised based on the number of 1s. The entries of one section in the

second column can again be combined together with entries in the next section, in a

similar manner. These combinations are illustrated in the Table below

Section Column 1
No.of 1s Binary
Decimal

Column 2 Column 3

1 1 0001 1
 0010 2

2 2 0101 5
 0110 6
 1001 9
 1010 10

3 3 0111 7
 1011 11
 1110 14

1-01 (1,5)
-001 (1,9)
0-10 (2,6)
-010 (2,10)

01-1 (5,7)
011- (6,7)
-110 (6,14)
10-1 (9,11)
101- (10,11)
1-10 (10,14)

--10 (2,6,10,14)
--10 (2,10,6,14)

All the entries in the column which are paired with entries in the next section are

checked off. Column 2 is again sectionalised with respect t the number of 1s. Column 3

is generated by pairing off entries in the first section of the column 2 with those items in

the second section. In principle this pairing could continue until no further combinations

can take place. All those entries that are paired can be checked off. It may be noted that

combination of entries in column 2 can only take place if the corresponding entries have the

dashes at the same place. This rule is applicable for generating all other columns as well.

After the tabulation is completed, all those terms which are not checked off constitute the

set of prime implicants of the given function. The repeated terms, like --10 in the column

3, should be eliminated. Therefore, from the above tabulation procedure, we obtain

seven prime implicants (denoted by their decimal equivalents) as (1,5), (1,9), (5,7),

(6,7), (9,11), (10,11), (2,6,10,14). The next stage is to determine the minimal set of

prime implicants.

Determination of the Minimal Set of Prime Implicants

The prime implicants generated through the tabular method do not constitute the minimal

set. The prime implicants are represented in so called "prime implicant table". Each column

in the table represents a decimal equivalent of the minterm. A row is placed for each prime

implicant with its corresponding product appearing to the left and the decimal group to the

right side. Asterisks are entered at those intersections where the columns of binary

equivalents intersect the row that covers them. The prime implicant table for the

function under consideration is shown in the figure.

In the selection of minimal set of implicants, similar to that in a K-map, essential implicants

should be determined first. An essential prime implicant in a prime implicant table is

one that covers (at least one) minterms which are not covered by any other prime

implicant. This can be done by looking for that column that has only one asterisk. For

example, the columns 2 and 14 have only one asterisk each. The associated row,

indicated by the prime implicant CD/, is an essential prime implicant. CD/ is selected as a

4

member of the minimal set (mark that row by an asterisk). The corresponding columns,

namely 2, 6, 10, 14, are also removed from the prime implicant table, and a new

table is construction as shown in the figure.

We then select dominating prime implicants, which are the rows that have more asterisks

than others. For example, the row A/BD includes the minterm 7, which is the only one

included in the row represented by A/BC. A/BD is dominant implicant over A/BC, and hence

A/BC can be eliminated. Mark A/BD by an asterisk and check off the column 5 and 7.

We then choose AB/D as the dominating row over the row represented by AB/C.

Consequently, we mark the row AB/D by an asterisk, and eliminate the row AB/C and the

columns 9 and 11 by checking them off.

Similarly, we select A/C/D as the dominating one over B/C/D. However, B/C/D can also be

chosen as the dominating prime implicant and eliminate the implicant A/C/D.

Retaining A/C/D as the dominant prime implicant the minimal set of prime implicants is

{CD/, A/C/D, A/BD and AB/D). The corresponding minimal SOP expression for the Boolean

function is:

 F = CD/ + A/C/D + A/BD + AB/D

If we choose B/C/D instead of A/C/D, then the minimal SOP expression for the Boolean

function is:

 F = CD/ + B/C/D + A/BD + AB/D

This indicates that if the selection of the minimal set of prime implicants is not unique,

then the minimal expression is also not unique.

There are two types of implicant tables that have some special properties. One is referred

to as cyclic prime implicant table, and the other as semi-cyclic prime implicant table. A

prime implicant table is considered to be cyclic if

1. it does not have any essential implicants which implies that there are at least two

asterisks in every column, and

2. There are no dominating implicants, which implies that there are same number of

asterisks in every row.

Example 2: A Boolean function with a cyclic prime implicant table is shown in the figure 3.

The function is given by

 F = Σ (0, 1, 3, 4, 7, 12, 14, 15)

All possible prime implicants of the function are:

 a = A/B/C/ (0,1) e = ABC (14,15)

 b = A/B/D (1,3) f = ABD/ (12,14)

 c = A/CD (3,7) g = BC/D/ (4,12)

 d = BCD (7,15) h = A/C/D/ (0,4)

As it may be noticed from the prime implicant table in the figure that all columns have two

asterisks and there are no essential prime implicants. In such a case we can choose any

one of the prime implicants to start with. If we start with prime implicant a, it can be

marked with asterisk and the corresponding columns, 0 and 1, can be deleted from the

table. After their removal, row c becomes dominant over row b, so that row c is selected

and hence row b is can be eliminated. The columns 3 and 7 can now be deleted. We

observe then that the row e dominates row d, and row d can be eliminated. Selection of

row e enables us to delete columns 14 and 15.

6

If, from the reduced prime implicant table shown in the figure, we choose row g it covers

the remaining asterisks associated with rows h and f. That covers the entire prime

implicant table. The minimal set for the Boolean function is given by:

 F = a + c + e + g

 = A'B'C' + A'CD + ABC + BC'D'

 The K-map of the simplified function is shown in the following figure

A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one respect.

In the cyclic case the number of minterms covered by each prime implicant is identical. In

a semi-cyclic function this is not necessarily true.

Example 3: Consider a semi-cyclic prime implicant table of a five variable Boolean function

shown in the figure.

Examination of the prime-implicant table reveals that rows a, b, c and d contain four

minterms each. The remaining rows in the table contain two asterisks each. Several

minimal sets of prime implicants can be selected. Based on the procedures presented

through the earlier examples, we find the following candidates for the minimal set:

 F = a + c + d + e + h + j

 or F = a + c + d + g + h + j

 or F = a + c + d + g + j + i

 or F = a + c + d + g + i + k

Based on the examples presented we may summarise the procedure for determination of

the minimal set of implicants:

1. Find, if any, all the essential prime implicants, mark them with *, and remove the

corresponding rows and columns covered by them from the prime implicant table.

2. Find, if any, all the dominating prime implicants, and remove all dominated prime

implicants from the table marking the dominating implicants with *s. Remove the

corresponding rows and columns covered by the dominating implicants.

3. For cyclic or semi-cyclic prime implicant table, select any one prime implicant as the

dominating one, and follow the procedure until the table is no longer cyclic or semi-

cyclic.

4. After covering all the columns, collect all the * marked prime implicants together to

form the minimal set, and convert them to form the minimal expression for the

function.

8

Simplification of Incompletely Specified functions

The simplification procedure for completely specified functions presented in the earlier

sections can easily be extended to incompletely specified functions. The initial

tabulation is drawn up including the dont-cares. However, when the prime implicant table is

constructed, columns associated with dont-cares need not be included because they do not

necessarily have to be covered. The remaining part of the simplification is similar to that

for completely specified functions.

Example 4: Simplify the following function:

 F(A,B,C,D,E) =∑(1,4,6,10,20,22,24,26) + d(0,11,16,27)

Tabulation of the implicants

00000 (d)

00001
00100
10000 (d)

00110
01010
10100
11000

10110
11010
01011 (d)

11011 (d)

 0

 1
 4
 16

 6
 10
 20
 24

 22
 26
 11

 27

0000- (0,1)
00-00 (0,4)
-0000 (0,16) (d)

001-0 (4, 6)
-0100 (4,20)
10-00 (16,20)
1-000 (16,24)

-0110 (6,22)
-1010 (10,26)
0101- (10,11)
101-0 (20,22)
110-0 (24,26)

1101- (26,27)
-1011 (11,27)

-0-00 (0,4,16,20)
-0-00 (0,16,4,20)

-01-0 (4,6,20,22)
-01-0 (4,20,6,22)

-101- (10,26,11,27)
-101- (10,11,26,27)

Pay attention to the don’t-care terms as well as to the combinations among themselves, by

marking them with (d).

Six binary equivalents are obtained from the procedure. These are 0000- (0,1), 1-000

(16,24), 110-0 (24,26), -0-00 (0,4,16,20), -01-0 (4,6,20,22) and -101- (10,11,26,27)

and they correspond to the following prime implicants:

 a = A/B/C/D// b = AC/D/E/ c = ABC/E/

d = B/D/E/ e = B/CE/ g = BC/D
The prime implicant table is plotted as shown in the figure.

It may be noted that the don’t-cares are not included.
The minimal expression is given by:

 F(A,B,C,D,E) = a + c + e + g
 = A'B'C'D' + ABC'E' + B'CE' + BC'D

Digital Electronics � Module 3
Logic Families: Introduction

N.J. Rao
Indian Institute of Science

id7733189 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M3L1 2

Logic families

A logic family is characterized by
� Its circuit configuration
� Its technology
� Specific optimization of a set of desirable properties
Many logic families were introduced into the market since

the introduction of integrated circuits in 1960s.
Some of the IC families had very short life spans.
� Standard TTL family which dominated the IC market got

superseded by the Low Power Schottky family.
� Necessary to be aware of the evolving technologies

December 2006 N.J.Rao M3L1 3

Features of a Logic Family

� Logic flexibility
� Availability of complex functions
� High noise immunity
� Wide operating temperature range
� Loading
� Speed
� Low power dissipation
� Lack of generated noise
� Input and output structures
� Packaging
� Low cost

December 2006 N.J.Rao M3L1 4

Logic Flexibility

It is a measure of the capability and versatility or the
amount of work or variety of uses that can be obtained
from a logic family.

Factors that enhance the logic flexibility
 Wired-logic capability
 Asserted/ not-asserted outputs
 Driving capability
 I/O interfacing
 Driving other logic families
 Multiple gates

December 2006 N.J.Rao M3L1 5

Complex Functions

� A complex function represents a grouping of basic gates
requiring a relatively high level of integration.

� As complexity increases, the number of input/output pins
also increases - but usually at a decreasing rate.

� High pin count gives the benefit of decreasing assembly
costs per gate while increasing the reliability per gate.

� The complexity is also measured in terms of gates per
chip.

December 2006 N.J.Rao M3L1 6

Noise Immunity

High immunity to noise is desired to prevent the occurrence
of false logic signals in a system.

Common sources of noise:
� Variations of the dc supply voltage,
� Ground noise
� Excessive coupling between signal leads
� Magnetically coupled voltages from adjacent lines,
� External sources (relays, circuit breakers, and power line

transients)
� Radiated signals

December 2006 N.J.Rao M3L1 7

Measures of Noise Immunity

� Voltage noise immunity (noise margin) is the amount of
voltage that can be added algebraically to the worst-case
output level before a worst-case gate tied to that output
will begin to switch.

� Noise immunity is specified in terms of millivolts or volts

December 2006 N.J.Rao M3L1 8

DC Noise Margin

It is a measure of its noise immunity, a gate�s ability to
withstand dc input signal variations.
 VIL: Low level input voltage
 VIH: High level input voltage
 VOL: Low level output voltage
 VOH High level output voltage

Voltage levels associated with logic High and logic Low
levels are not single values but a band of values.

December 2006 N.J.Rao M3L1 9

DC Noise Margin (2)

A gate may accept an input signal in the range of 0.0 V to
0.8 V as logic Low while it produces at its output a Low
voltage of 0.4 V under worst loading and voltage supply
conditions.

DC margin is considered to be 0.4 V (0.8 - 0.4 = 0.4 V)
The dc noise margins are defined as

Low level dc noise margin: VILmax- VOLmax

High level dc noise margin: VOHmin - VIHmin

December 2006 N.J.Rao M3L1 10

DC Noise Margin (3)

December 2006 N.J.Rao M3L1 11

AC Noise Margin

� It refers to the immunity of a gate to noise of very short
durations.

� Amplitude and duration of the noise signals become
important.

� The noise signal must contain enough energy to effect a
change in the state of the circuit.

� AC noise margins are higher than dc noise margins.

December 2006 N.J.Rao M3L1 12

AC Noise Margin (2)

The ability of a logic element to operate in a noisy
environment depends on

� Built-in operating margins
� Time required for the device to react
� The ease with which a noise voltage is developed

December 2006 N.J.Rao M3L1 13

Operating Temperature Range

� For commercial and industrial needs, temperatures
usually range from 0o or -30o C to 55o, 70o or 85o C

� The military has an universal requirement for operability
from -55o C to 125o C.

� Advantages of a wide temperature specification are
offset by the increased cost

December 2006 N.J.Rao M3L1 14

Loading

� The output of a logic gate may be connected to the
inputs of several other similar gates

� The fan out of a gate is the maximum number of inputs
of the same IC family that the gate can drive while
maintaining its output levels within specified limits.

December 2006 N.J.Rao M3L1 15

Loading

The input and output loading parameters are normalized, with
regard to TTL devices

1 TTL Unit Load (U.L.) = 40 A in the High state (Logic �1�)
1 TTL Unit Load (U.L.) = -1.6 mA in the Low state (Logic �0�)

The output of 74LS00 will sink 8.0 mA in Low state and source
400 A in the High state.

� The normalized output Low drive factor is: (8.0/1.6) = 5 U.L.

� Output High drive factor is: (400 A/40 A) = 10 U.L.

December 2006 N.J.Rao M3L1 16

Speed

� The shorter the propagation delay, the higher the speed
of the circuit

� Propagation delay of a gate:
time interval between the application of an input pulse
and the occurrence of the resulting output pulse.

December 2006 N.J.Rao M3L1 17

Propagation Delays

Two propagation delays associated with a logic gate:
tPHL: The time between a specified reference point on the
input pulse and a corresponding reference point on the
output pulse, with the output changing from the High
level to the Low level.
tPLH: The time between specified reference point on the
input pulse and a corresponding reference point on the
output pulse, with the output changing from the Low level
to the High level.

December 2006 N.J.Rao M3L1 18

Speed
The reference points are chosen as the 50% of the leading
and trailing edges of the wave forms, or the threshold
voltage (where the input and output voltages of the gate are
equal) point.

A B

A

B

tPHL

t PLH

December 2006 N.J.Rao M3L1 19

Power Dissipation

Low power dissipation is desired in large systems as it
leads to

� Lower cooling costs
� Lower power supply and distribution costs,
� Reduction in mechanical design problems
� Decrease in power dissipation on a per-gate basis with

higher integration levels

December 2006 N.J.Rao M3L1 20

Steady state dissipation

DC supply voltage VCC x Average supply current ICC

� Value of ICC for a Low gate output is higher than for a
High output

� Manufacturer's data sheet usually specifies both these
values as ICCL and ICCH.

� The average ICC is then determined based on a 50%
duty cycle operation of the gate

December 2006 N.J.Rao M3L1 21

Dissipation during transitions

� The supply current drawn is generally very different
during the transition times

� More number of active devices come into operation, and
parasitic capacitors will have to be charged and
discharged.

� Power dissipation increases linearly as a function of the
frequency of switching.

December 2006 N.J.Rao M3L1 22

Dissipation during transitions (2)

Speed-power product (SPP) is specified by the
manufacturer

SSP is specified in terms of pico Joules (symbolized
by pJ)

SPP of a 74HC CMOS gate at 100 KHz is
SPP = (8ns) x (0.17 mW) = 1.36 pJ.

December 2006 N.J.Rao M3L1 23

Generated Noise

� Switching transients either on power line or signal line
can be very serious sources of noise.

� Care has to be taken to design the power, ground and
signal interconnections.

� All the power supply leads in a system must be
bypassed.

� Supply distribution is less expensive if the circuits
generate less noise.

December 2006 N.J.Rao M3L1 24

Input and output structures

Effective interfacing both at the input and output are
needed

Interfacing at the input requires facility
� To accept different voltage levels for the two logic states
� To accept signals with rise and fall times very different

from those of the signals associated with that logic family
At the output we require
� Larger current driving capability
� Facility to increase the voltages associated with the two

logic levels
� Ability to tie the outputs of gates to have wired logic

operations

December 2006 N.J.Rao M3L1 25

Interfacing at the inputs and outputs

� Interfacing the slow varying signals is achieved through
Schmitt triggers.

� Voltage levels of the output signals can be increased by
providing open-collector configurations. Open-collector
configurations also permit us to achieve wired-logic
operations

� The outputs of gates can be tied together by having
tristate outputs.

December 2006 N.J.Rao M3L1 26

Schmitt Trigger Inputs
When a slow changing signal superposed with noise
is applied to gate

V
T

V

V
T

V
T

+

-

O U T

High

Low

a

b
O UT

H igh

Low

c

December 2006 N.J.Rao M3L1 27

Three-State Outputs

� Logic outputs have two normal states; Low and High
� It is desirable to have another electrical state in which

the output of the circuit offers very high impedance, high-
impedance, Hi-z or floating state

� In this state, the circuit is effectively disconnected at its
output, except for a small leakage current.

� Three states: logic 0, logic 1, and Hi-z.
� An output with three possible states is called tri-state

output.

December 2006 N.J.Rao M3L1 28

Three-State Outputs (2)

� Devices with three state outputs, should have an extra
input, called as �output enable� (OE) for placing a device
in low-impedance or high-impedance states.

� The outputs of devices which can have three states can
be tied together, to create a three-state bus.

� The control circuitry must enable that at any given time
only one output is enabled while all other outputs are
kept in high-z state.

December 2006 N.J.Rao M3L1 29

Open-Collector (or Drain) Outputs

� An IC device has a pull-up resistor at its output transistor
� Such circuits prevent us from tying the outputs of two

such devices together.
If the internal pull-up elements are removed, then it allows

one to
� tie up the outputs of more than one device together

connect external pull-up resistor to increase the output
voltage swing.

Devices with open-collector (open-drain) outputs are very
useful for

� Creating wired logic operations, or
� Interfacing loads which are incompatible with the

electrical characteristics of the logic family.

December 2006 N.J.Rao M3L1 30

Packaging

� Initially most of the digital ICs were made available in
dual-in-line packages (DIP).

� Commercial ICs come in plastic DIPs
� Ceramic DIPs are used for operation over a larger

temperature range
� Increasing integrations lead to a wide range of chip level

packages

December 2006 N.J.Rao M3L1 31

Cost

Often the most important one, is the cost of a logic family.
It is not sufficient to compare the cost of logic families at
gate level.
The total system cost is decided by

�Cost of ICs
�Cost printed wiring board
on which the ICs are
mounted
� Assembly of circuit board
� Programming the
programmable devices
�etc.

� Procurement
� Testing
� Power supply
� Documentation
� Storage

PROPERTIES OF A LOGIC FAMILY

Since the introduction of integrated circuits in 1960s, many logic families were

introduced into the market. Each logic family is characterised by

 a circuit configuration

 a particular semiconductor technology

 a specific optimisation of a set of desirable properties

Some of the IC families had very short life spans. With continuously changing

technologies, ICs that were quite popular suddenly become unattractive and

uneconomical. For example Standard TTL family which dominated the IC market

for a long period got superseded by the Low Power Schottky family. A digital

designer should not only have a good knowledge of the existing digital families but

should also be aware of the trends as well. The major requirements and the

desirable features of a logic family are:

 Logic flexibility

 Availability of complex functions

 High noise immunity

 Wide operating temperature range

 Loading

 Speed

 Low power dissipation

 Lack of generated noise

 Input and output structures

 Packaging

 Low cost

Logic Flexibility

Logic flexibility is a measure of the capability and versatility or the amount of work

or variety of uses that can be obtained from a logic family, in other words, it is a

measure of the utility of a logic family in meeting various system needs. Factors

that enhance the logic flexibility are wired-logic capability, asserted/not-asserted

outputs, line driving capability, indicator driving, I/O interfacing, driving other logic

families and multiple gates.

Wired logic refers to the capability of tying the outputs of gates together to perform

additional logic without extra hardware and components. Frequently, asserted/not-

asserted versions of a variable are required in a logic system. If the logic family has

gates with not-asserted outputs, use of inverters can be avoided. If the circuits can

drive non-standard loads such as long signal lines, lamps and indicator tubes,

additional discrete circuits can be avoided. The gate count can be minimised in a

digital system if AND, NAND, OR, NOR and EX-OR gates are all available in the

family. The logic families currently popular, namely TTL, CMOS and to a limited

extent ECL, in the market have similar logic flexibility, and as such this factor does

not constitute a deciding issue in selecting a logic family.

Complex Function

A complex function may be described as a grouping of basic gates requiring a

relatively high level of integration. As complexity increases, the number of

input/output pins also increases - but usually at a decreasing rate. Gate-to-pin

ratios that normally increase with complexity give the benefit of decreasing assembly

costs per gate while increasing the reliability per gate. The complexity is also

measured, at present, by the number of gates that can be offered in a

programmable logic device or programmable gate array.

Noise Immunity

In order to prevent the occurrence of false logic signals in a system, high immunity

to noise is desired. Common sources of noise in digital circuits are

 Variations of the dc supply voltage

 Ground noise

 Excessive coupling between signal leads

 Magnetically coupled voltages from adjacent lines

 External sources such as relays, circuit breakers, and power line transients

If the noise immunity is higher, the number of precautions required to prevent the

false logic signals will also be less. This becomes an important advantage in those

areas, such as in industrial logic control systems that are subject to high noise levels.

At present with increasing use of electronic control systems even in household

appliances, the ambient noise levels at homes have significantly risen. Voltage noise

immunity, or noise margin, is normally specified in terms of millivolts or volts. The

noise immunity is specified as the amount of voltage that can be added algebraically

to the worst-case output level before a worst-case gate tied to that output will begin

to switch.

DC Noise Margin: The dc noise margin of a logic gate is a measure of its noise

immunity, a gate’s ability to withstand dc input signal variations. The term dc noise

margin applies to noise voltages of relatively long duration compared to the gate’s

response times. The dc noise margin is defined in terms of the following voltage

levels associated with a gate;

 VIL: Low level input voltage

 VIH: High level input voltage

 VOL: Low level output voltage

 VOH: High level output voltage

Voltage levels associated with logic High and logic Low levels are not single values

but a band of values.

For example, a gate may accept an input signal in the range of 0.0 V to 0.8 V as

logic Low while it produces at its output a Low voltage of 0.4 V under worst loading

and voltage supply conditions.

In such a situation 0.4 V (0.8 - 0.4 = 0.4 V) is considered to be the dc noise margin.

When the output of one gate is connected to the input of another gate, as the output

is limited to 0.4 V even if a noise voltage up to 0.4 is superimposed on it, the second

gate would accept it as logic Low signal.

The dc noise margins are defined as

 Low level dc noise margin: VILmax- VOLmax

 High level dc noise margin: VOHmin - VIHmin

The noise margins and the voltage levels associated with the gates can be
graphically shown as in the figure.

V0H(min)

V IH(min)

VCC

VIL(max)

VIL(max)

GND

AC Noise Margin: The term ac noise margin refers to the noise immunity of a gate

to noise of very short durations. In short duration noise, both the amplitude and

duration of the noise signals become important. The noise signal must contain

enough energy to effect a change in the state of the circuit. Therefore, the ac noise

margins are considerably higher than dc noise margins.

The ability of a logic element to operate in a noisy environment involves more than

the dc and ac noise margins. To be a problem, an externally generated noise pulse

must be received into the system and cause malfunction. The noise voltage must be

introduced into the circuit by radiated or coupled means. The amount of noise power

required to develop a given voltage is strictly a function of the circuit impedances.

Noise power must be transferred from the noise source with some arbitrary

impedance, through a coupling to the impedance of the circuit under consideration.

The ability to operate in a noisy environment is, then, an interaction of the built-in

operating margins, the time required for the device to react, and the ease with which

a noise voltage is developed. Therefore, the noise rejection capabilities of a logic

family represent a combination of a number of circuit parameters.

Operating Temperature Range

A wide operating range is always desired and is often a design requirement.

For commercial and industrial needs, temperatures usually range from 0o C or -30o C

to 55o C, 70o C or 85o C.

The military has a universal requirement for operability from -55o C to 125o C.

In most cases a logic line specified from -55o C to 125o C will exhibit better

characteristics at room temperature conditions than a line specified by commercial

requirements. It means performance of a logic circuit with regard to fan out, noise

immunity and tolerance to power supply variations is usually better, since the circuits

must still be within specifications even when the inherent degradation due to

temperature extremes occurs. The advantages of a wide temperature specification

are often offset by the increased cost.

Loading

In digital systems many digital ICs are interconnected to perform different functions.

The output of a logic gate may be connected to the inputs of several other similar

gates so the load on the driving gate becomes an important factor. The fan-out of a

gate is the maximum number of inputs of ICs from the same IC family that the gate

can drive while maintaining its output levels within specified limits. In other words,

the fan-out specifies the maximum loading that a given gate is capable of handling.

The input and output loading parameters are generally normalised, with regard to

TTL devices, to the following values.

 1 TTL Unit Load (U.L.) = 40 µA in the High state (Logic “1”)

 1 TTL Unit Load (U.L.) = -1.6 mA in the Low state (Logic “0”)

For example the output of 74LS00 will sink 8.0 mA in Low state and source 400 µA in
the High state.

The normalised output Low drive factor is:

 (8.0/1.6) = 5 U.L.

The output High drive factor is:

 (400/40) = 10 U.L.

Speed

Propagation delay is a very important characteristic of logic circuits because it limits

the speed (frequency) at which they can operate. The shorter the propagation

delay, the higher the speed of the circuit.

The propagation delay of a gate is basically the time interval between the application

of an input pulse and the occurrence of the resulting output pulse.

There are two propagation delays associated with a logic gate:

1. tPHL: The time between a specified reference point on the input pulse and a

corresponding reference point on the output pulse, with the output changing

from the High level to the Low level.

2. tPLH: The time between specified reference point on the input pulse and a

corresponding reference point on the output pulse, with the output changing

from the Low level to the High level.

The reference points on the wave forms with respect to which the time delays are

measured can be chosen as

The 50% of the leading and trailing edges of the wave forms

or

The threshold voltage (where the input and output voltages of the gate are equal)

point.

These propagation delays are illustrated in the figure for both inverted and non-

inverted outputs, with 50% point taken as the reference.

Power Dissipation

Logic with low power dissipation is desired in large systems because it lowers cooling

costs, and power supply and distribution costs, thereby reducing mechanical design

problems as well. In an air-borne or satellite application, power dissipation may be

the most critical parameter because of power-source limitations. As chip complexity

and packaging density continue to increase, power dissipation will decrease on a per-

gate basis, but will increase per-chip basis. This is dictated by heat dissipation

restriction arising from system design and maximum allowable semiconductor

junction temperatures.

The power dissipation of a logic gate is

dc supply voltage VCC x the average supply current ICC

Normally, the value of ICC for a Low gate output is higher than for a High output. The

manufacturer's data sheet usually specifies both these values as ICCL and ICCH. The

average ICC is then determined based on a 50% duty cycle operation of the gate.

The supply current drawn is generally very different during the transition time than

during the steady state operation in logic High or Low states. During the transition

times more number of active devices is likely to come into operation, and parasitic

capacitors will have to be charged and discharged. Therefore, there is more

dissipation every time a logic circuit switches its state. It also means that the power

dissipation increases linearly as a function of the frequency of switching. A gate that

operates at higher frequency will dissipate more power than the same gate operating

at a lower frequency. This phenomenon will have a significant effect on the design of

high frequency circuits.

A B

A

B

tPHL

t PLH

In view of this another parameter known as speed-power product (SPP) is specified

by the manufacturer as a measure of the performance of a logic circuit based on the

product of the propagation delay time with the power dissipation at a specified

frequency.

The speed-power product is specified in terms of pico Joules, symbolised by pJ.

For example, the SPP of a 74HC CMOS gate at 100 KHz is

 SPP = (8ns) x (0.17 mW) = 1.36 pJ.

Generated Noise

The switching transients either on power line or signal line can be very serious

sources of noise. They can conduct and radiate through different channels and

influence the functioning of the near by circuits or systems. Therefore, the lack of

generated noise is an important requirement of a logic family. When the switching

noise is significant, special care has to be taken to design the power, ground and

signal interconnections.

 All the power supply leads in a system must be bypassed.

 Power supply and ground distribution has to be carefully designed.

Supply distribution is less expensive if the logic family generates minimal noise.

Also, the maximum line lengths in the back plane and wiring on the printed wiring

board are functions of cross talk generated by the logic family. A logic family that

draws constant current in both logic Low and High states, and does not change

supply current when switching states will generate less noise.

Input and output Structures

A logic family should provide features for effective interfacing both at the input and

output. Interfacing at the input requires facility to accept different voltage levels for

the two logic states, and to accept signals with rise and fall times very different from

those of the signals associated with that logic family. At the output we require larger

current driving capability, facility to increase the voltages associated with the two

logic levels, and the ability to tie the outputs of gates to have wired logic operations.

Interfacing the slow varying signals (signals with rise and fall times greater than one

microsecond) is achieved through Schmitt triggers. Voltage levels of the output

signals can be increased by providing open-collector (or open-drain) configurations.

Such open-collector (open-drain) configurations also permit us to achieve wired-logic

operations. The outputs of gates can be tied together by having tristate outputs.

Schmitt Trigger Inputs: When a slow changing signal superposed with noise is

applied to a gate which has a single threshold VT, there is a possibility of the output

changing several times during signal transition period, as shown in the figure (b).

Clearly, such a response is not acceptable. When the input signal to a gate has long

transition times, the gate is likely to stay in the linear region of its operation for a

long period. During this period the gate is likely to get into oscillations because of

the parasitics associated with the circuit, which are not desirable. The problems

associated with slow changing signals and the superposed noise can be solved if the

gate has Schmitt trigger type of input.

VT

V

VT

VT

+

-

OUT
High

Low

a

b
OUT

High

Low

c

A Schmitt trigger is a special circuit that uses feedback internally to shift the

switching threshold depending on whether the input is changing from Low to High or

from High to Low. For example, suppose the input of a Schmitt-trigger inverter is

initially at 0 V (solid Low) and the output is High close to the VCC (or VDD). If the

input voltage is increased, the output will not go Low until the input voltage reaches

a threshold voltage, VT. Any value of the input voltage above this threshold will

make the output to remain Low. The output of a Schmitt gate for a slow changing

noisy signal is shown in the figure (c). Every logic family should have a few gates

which provide for Schmitt inputs to effectively interface with real world signals.

Three-State Outputs: Logic outputs have two normal states, Low and High,

corresponding to logic values 0 and 1. It is desirable to have another electrical

state, not a logic state at all, in which the output of the circuit offers very high

impedance. In this state, it is equivalent to disconnecting the circuit at its output,

except for a small leakage current. Such a state is called high-impedance, Hi-z or

floating state. Thus we have an output that could go into one of the three states:

logic 0, logic 1 and Hi-z. An output with three possible states is called tri-state

output.

Devices that have three state outputs, should have an extra input signal, that can be

called as “output enable” (OE) for placing the device either in low-impedance or

high-impedance states. The outputs of devices which can have three states can be

tied together, to create a three-state bus. The control circuitry must enable that at

any given time only one output is enabled while all other outputs are kept in Hi-z

state.

Open-Collector (or Drain) Outputs: The collector terminal of a transistor (or the

drain terminal of a MOSFET) is normally connected in a logic device to a pull-up

resistor or a special pull-up circuit. Such circuits prevent us from tying the outputs

of two such devices together. If the internal pull-up elements are removed, then it

gives freedom to the designer to tie up the outputs of more than one device

together, or to connect external pull-up resistor to increase the output voltage swing.

Devices with open-collector (open-drain) outputs are very useful for creating wired

logic operations or for interfacing loads which are incompatible with the electrical

characteristics of the logic family. It is, therefore, desirable for a logic family to have

devices, at least some, which have open-collector (or open-drain) outputs.

Packaging

Until a few years ago most of the digital ICs were made available in dual-in-line

packages (DIP). If the devices were to be operated in commercial temperature

range, they come in plastic DIPs, and if they are to be used over a larger

temperature range, they would be used in ceramic DIPs. With increasing

miniaturisation at systems level and integration at the chip level the number of

pins/IC have been steadily increasing. This increase in the pin count led to the

introduction of different packages for the ICs. Selecting an appropriate package is

one of the design decisions today’s digital designer has to make.

Cost

The last consideration, and often the most important one, is the cost of a given logic

family. The first approximate cost comparison can be obtained by pricing a common

function such as a dual four-input or quad two-input gate. But the cost of a few

types of gates alone can not indicate the cost of the total system. The total system

cost is decided not only by the cost of ICs but also by the cost of

 printed wiring board on which the ICs are mounted

 assembly of circuit board

 testing

 programming the programmable devices

 power supply

 documentation

 procurement

 storage

 etc.

In many instances the cost of ICs could become a less important component of the

total cost of the system.

Concluding Note

The question that arises after considering all the desirable features of a logic family

is “why not design a family that best meets these needs and then mass produce it

and drive the costs down?” Unfortunately, this can not be achieved as there is no

universal logic family that a does a good job of meeting all the previously stated

needs. Silicon technology, though better understood and studied than any other

solid-state technology, still has its own limitations. Besides, the demand for higher

and higher performance specifications continues to grow.

Electrical Characteristics of Schottky TTL Family

Table gives the worst case values for the input and output voltage levels in both the

logic states.

 TTL Families Military(-55 to +125oC) Commercial(0to 70oC)

 VI VIH VOL VOH VIL VIH VOL VOH

TTL Standard (54/74) 0.8 2 0.4 2.4 0.8 2 0.4 2.4 V

STTL Schottky (54/74S) 0.8 2 0.5 2.5 0.8 2 0.5 2.7 V

LSTTL Low-power Schottky
(54/74LS)

0.8 2 0.5 2.5 0.8 2 0.5 2.7 V

ALSTTL

Advanced Low- power
Schottky (54/74ALS)

0.8 2 0.4 2.5 0.8 2 0.5 2.7 V

ASTTL Advanced Schottky
(54/74AS)

0.8 2 0.5 2.5 0.8 2 0.5 2.7 V

FAST Fairchild Advanced
Schottky (54/74F)

0.8 2 0.5 2.5 0.8 2 0.5 2.5 V

The noise margins are:

 dc noise margin in High state = VOHmin - VIHmin = 0.7 V

 dc noise margin in Low state = VILmax - VOLmax = 0.3 V

The noise margin levels are different in High and Low states and are shown in the

following Table. These levels are lower in comparison to the noise levels of CMOS

circuits.

TTL Families

Military
(-55 to 125oC)

Commercial
(0 to 70oC)

 Low NM High NM Low NM High NM

TTL Standard (54/74) 400 400 300 400 mV

STTL Schottky (54/74S) 300 500 300 700 mV

LSTTL Low-power Schottky
(54/74LS)

300 500 300 700 mV

ALSTTL

Advanced Low-
power Schottky
(54/74ALS)

400 500 300 500 mV

ASTTL Advanced Schottky
(54/74AS)

400 500 300 500 mV

FAST Fairchild Advanced
Schottky (54/74F)

300 500 300 500 mV

Loading: The load characteristics of Schottky TTL families are given in the following Table.

TTL
Families

Input currents Output currents Units

 IIH IIL IOH IOL

TTL 0.04 -1.6 -0.4 16 mA

STTL 0.05 -2 -1 20 mA

LSTTL 0.02 -0.4 -0.4 8 mA

ALSTTL 0.02 -0.1 -0.4 8 mA

ASTTL 0.02 -0.5 -1 20 mA

FAST 0 0 -0.4 8 mA

Fan out is a measure of the number of gate inputs that are connected to (or driven by)

a single output. The currents associated with LSTTL family are:

 IILmax = -0.4 mA (This current flows out of a LSTTL input. This is sometimes
 called Low-state unit load for LSTTL)

 IIHmax = 20 µA (This current flows into the LSTTL input. This is called
 High-state Unit load for LSTTL)

 IOLmax = 8 mA

 IOHmax = -400 µA

Fan out in both the High and Low states is 20

LSTTL Dynamic Electrical Behavior

Both the speed and the power consumption of LSTTL device depend on, to a large

extent, AC or dynamic characteristics of the device and its load, that is, what happens

when the output changes between states. The speed depends on two factors, transition

times and propagation delay.

Transition Time: The amount of time that the output of a logic circuit takes to change

from one state to another is called the transition time. The ideal situation we would like

to have is shown in the figure (a).

t f

t r t f

t r

(a)

(b)

(c)

However, in view of the parasitic associated with circuits and boards, it is neither

possible nor desirable to have such zero transition times. Realistically, an output takes

some finite time to transit from one state to the other. These transition times are also

known as rise time and fall time. The semi-idealistic transitions are shown in the figure

(b). But in actuality the transitions are never sharp in view of the parasitic elements,

and edges are always rounded. We may identify the transition times as the times taken

for the output to traverse the undefined voltage zones, as shown in the figure (c).

The rise and fall times of a LSTTL output depend mainly on two factors, the ON

transistor resistance and the load capacitance. The load capacitance comes from three

different sources: output circuits including a gate’s output transistors, internal wiring

and packaging, have capacitances associated with them (of the order of 2-10 pF);

wiring that connects an output to other inputs (about 1pF per inch or more depending

on the wiring technology); and input circuits including transistors, internal wiring and

packaging (2-15 pF per input).

Propagation Delay: Several factors lead to nonzero propagation delays. In a LSTTL

device, the rate at which transistors change state is influenced by the physics of the

device, the circuit environment including input-signal transition rate, input capacitance,

and output loading. To factor out the effect of rise and fall times, manufacturers usually

specify propagation delays at the midpoints of input and output transitions, as shown in

the figure.

tPHL tPLH

Power Consumption: The currents drawn by the TTL circuits would be different in

logic 0 and 1 states, as different sets of transistors get switched on in different states.

Hence the designations of the supply current are ICCL and ICCH. For computing the power

consumed by the gate an average (ICC) of these two currents is taken. The power

consumed is given by

 PD = ICC x VCC

When a TTL circuit changes its state, the current drawn during the transition time would

be larger than either of the steady states, as larger number of transistors would come

into conducting state. The transition peak creates a large noise signal on the power

supply line. If this is not properly filtered by using a bypass capacitance very close to

the IC, it can constitute a major source of noise signals in TTL based digital systems.

Therefore, there is a component of power dissipation that is proportional to frequency.

However, this frequency dependent power dissipation becomes significant with regard to

quiescent power dissipation only at very high frequencies.

Table gives the performance characteristics of TTL family, which also enables us to

appreciate how the technology improvements lead to the performance improvements.

Family

Prop.
Delay

(ns)

PWR
Dissp.

(mW)

SPD.PWR
Product

(pJ)

Maximum
Flip-Flop
frequency

(MHz)
TTL 10 10 100 35

HTTL 6 22 132 50

LTTL 33 1 33 3

LSTTL 9 2 18 45

STTL 3 19 57 125

ALS 4 1.2 4.8 70

AS 1.7 8 13.6 200

FAST 3.5 5.4 18.9 125

Digital Electronics
Module 3: TTL Family

N.J. Rao
Indian Institute of Science

id8344719 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M3L2 2

TTL Family

It offered best performance-to-cost ratio at the time of its introduction
Its versatility lead to several subfamilies:
� Low Power TTL
� High Frequency TTL
� Schottky TTL
Several sub-families have evolved in the Schottky TTL family:
� Low-power Schottky TTL (LSTTL)
� Fairchild Advanced Schottky TTL (FAST)
� Advanced Low Power Schottky TTL (ALSTTL)
� Advanced Schottky TTL (ASTTL)

December 2006 N.J.Rao M3L2 3

Bipolar logic families

� Use semiconductor diodes and bipolar junction transistor
as the basic building blocks

� Simplest bipolar logic elements use diodes and resistors
to perform logic operation (diode logic)

� Many TTL logic gates use diode logic internally, and
boost their output drive capability using transistor
circuits.

� Some TTL gates use parallel configurations of

transistors to perform logic functions.

December 2006 N.J.Rao M3L2 4

Diode

A diode can be modelled as

Slope = 1/Rf

V

I

Vd

Vd=0.6v

Reverse bias Forward bias

December 2006 N.J.Rao M3L2 5

Diode (2)

� It is an open circuit when it is reverse biased (we ignore
its leakage current)

� It acts like a small resistance, Rf, in series with Vd, a
small voltage source.

� Rf is the forward resistance of the diode, about 25 
� Vd is called diode drop, and is about 0.6 V

December 2006 N.J.Rao M3L2 6

Logic operation with diodes
The circuit performs AND function
0-2 V (Low) input is considered logic 0
3-5 V (High) input is considered as logic 1.

When both A and B inputs are High, the output X is High
When any one of the inputs is at Low level the output is Low

December 2006 N.J.Rao M3L2 7

Bipolar Junction Transistor as a
Switch

Vcc

R1

R2

Ib

Ic

Ib+Ic

December 2006 N.J.Rao M3L2 8

Transistor as a Switch

When the input of a saturated transistor is changed
� Output does not change immediately
� It takes extra time, called storage time, to come out of

saturation
Storage time accounts for a significant portion of the

propagation delay in the earlier TTL families.
This storage time is reduced by placing a Schottky diode

between the base and collector of each transistor that
might saturate.

December 2006 N.J.Rao M3L2 9

Schottky Barrier Diode

Forward current- voltage
characteristics differences
between the SBD and p-n
junction

It is a rectifying metal-
semiconductor contact
formed between a metal and
highly doped N
semiconductor.

December 2006 N.J.Rao M3L2 10

Schottky Transistor

The Schottky transistor makes use of two earlier concepts:
� Baker clamp
� Schottky-Barrier-Diode (SBD)

December 2006 N.J.Rao M3L2 11

Basic NAND Gate

A

B D2

D1

D5

D6

D3

D4

Q3

Q4

Q5

Q2

Q1

15K

5K

35K28K

18K 76K

110Ω
Vcc

December 2006 N.J.Rao M3L2 12

FAST Schottky TTL NAND

D4

D2

D6

D5

10K 10K 4.1K 45

Q6

Q5

D7

D8

Q2

15K 2K 3K

D10 D11

Q7Q4

D12

5K

Vcc



D9

Q8

D1

D3

December 2006 N.J.Rao M3L2 13

� 75-80% power reduction compared to standard Schottky
TTL

� 20-40% improvement in the circuit performance using
MOSAIC process

� A flatter power/frequency curve
� Higher fan out

FAST devices provide

December 2006 N.J.Rao M3L2 14

ALS NAND Gate

2 K

A

Vc c



O U T P U T

B



D 1

D 3

D 4

D 2

Q 2
Q 4

Q 3

Q 1

Q 9

 

Q 5

Q 7

D 8

2 5 K

Q 1 1

1 0 0

D 9

D 7

D 6

Q 6

D 5

3 0 K

2 K





D 1 1

5 0 K
2 6



Q 8
1 K

Q 1 0

D 1 0

2 k



1 k

1 0 K

December 2006 N.J.Rao M3L2 15

ASTTL NAND Gate

5 .6 K2.8K

A





5 K

O U T P U T

B

5 0

5 0 K

Q 6

3 7K

D 1

D 5
D 3

D 4

D 2

Q 2
Q 4

Q 3

Q 1

Q 7

 

Q 8

Q 5

Vcc

December 2006 N.J.Rao M3L2 16

Electrical Characteristics of
STTL family

V2.50.520.82.50.520.8Fairchild Advanced
Schottky (54/74F)

FAST

V2.70.520.82.50.520.8Advanced Schottky
(54/74AS)

ASTTL

V2.70.520.82.50.420.8Advanced Low- power
Schottky

(54/74ALS)

ALSTTL

V2.70.520.82.50.520.8Low-power Schottky
(54/74LS)

LSTTL

V2.70.520.82.50.520.8Schottky (54/74S)STTL

V2.40.420.82.40.420.8Standard (54/74)TTL

VOHVOLVIHVILVOHVOVIHVI

Commercial (0 to 70oC)Military (-55 to +125oC)TTL Families

December 2006 N.J.Rao M3L2 17

Noise Margins

dc noise margin in High state

= VOHmin - VIHmin = 0.7 V
dc noise margin in Low state

= VILmax - VOLmax = 0.3 V

December 2006 N.J.Rao M3L2 18

Noise Margins

mV500300500300Fairchild Advanced
Schottky (54/74F)

FAST

mV500300500400Advanced Schottky
(54/74AS)

ASTTL

mV500300500400AdvancedLow- power
Schottky (54/74ALS)

ALSTTL

mV700300500300Low-power Schottky
(54/74LS)

LSTTL

mV700300500300Schottky (54/74S)STTL

mV400300400400Standard (54/74)TTL

High
NM

Low NMHigh NMLow NM

Commercial
(0 to 70oC)

Military
(-55 to +125oC

TTL Families

December 2006 N.J.Rao M3L2 19

Loading

mA8-0.400FAST

mA20-1-0.50.02ASTTL

mA8-0.4-0.10.02ALSTTL

mA8-0.4-0.40.02LSTTL

mA20-1-20.05STTL

mA16-0.4-1.60.04TTL

IOLIOHIILIIH
Units

Output currentsInput currents
TTL Family

December 2006 N.J.Rao M3L2 20

Fan out

IILmax = -0.4 mA (This current flows out of a LSTTL input
and this is called Low-state unit load
for LSTTL)

IIHmax = 20 mA (This current flows into the LSTTL input,
and is called High-state Unit load for
LSTTL)

IOLmax = 8 mA

IOHmax = - 400 A
Fan out in both High and Low states is 20

December 2006 N.J.Rao M3L2 21

Signal Representation

t f

t r tf

t r

(a)

(b)

(c)

December 2006 N.J.Rao M3L2 22

Transition Times

The rise and fall times depend on
 ON transistor resistance and
 Load capacitance

The load capacitance comes from
 Internal wiring and packaging have capacitances

associated with them (about 2-10 pF)
 Wiring that connects an output to other inputs (about

1 pF per inch or more depending on the wiring
technology)

 Input circuits including transistors, internal wiring and
packaging (2-15 pF per input)

December 2006 N.J.Rao M3L2 23

Propagation Delay

Manufacturers usually specify propagation delays at the
midpoints of input and output transitions

tPHL tPLH

December 2006 N.J.Rao M3L2 24

Power Consumption

� The currents drawn would be different in logic 0 and 1 states
� ICC is the average of ICCL and ICCH

� The power consumed is given by PD = ICC x VCC

� Current drawn during the transition time would be larger than either
of the steady states

� Transition peaks create large noise signal on the power supply line.
� Needs filtering by using a bypass capacitance very close to the IC
� Transition component of power dissipation is proportional to

frequency.
� This frequency dependent power dissipation becomes significant

with regard to quiescent power dissipation only at very high
frequencies.

December 2006 N.J.Rao M3L2 25

Performance characteristics

12518.95.43.5FAST

20013.681.7AS

704.81.24ALS

12557193STTL

451829LSTTL

333133LTTL

50132226HTTL

351001010TTL

Maximum
Flip-Flop frequency

(MHz)

SPD.PWR
Product

(pJ)

PWR
Dissp.

(mW)

Prop.
Delay

(ns)
Family

TTL Family

Introduction

Transistor-Transistor Logic (TTL) and Emitter Coupled Logic (ECL) are the most commonly

used bipolar logic families. Bipolar logic families use semiconductor diodes and bipolar

junction transistors as the basic building blocks of logic circuits. Simplest bipolar logic

elements use diodes and resistors to perform logic operation; this is called diode logic.

Many TTL logic gates use diode logic internally, and boost their output drive capability using

transistor circuits. Other TTL gates use parallel configurations of transistors to perform logic

functions.

It turned out at the time of introducing TTL circuits that they were adaptable to virtually all

forms of IC logic and produced the highest performance-to-cost ratio of all logic types. In

view of its versatility a variety of subfamilies (Low Power, High Frequency, Schottky)

representing a wide range of speed-power product have also been introduced. The Schottky

family has been selected by the industry to further enhance the speed-power product. In

Schottky family circuits, a Schottky diode is used as a clamp across the base-collector

junction of a transistor to prevent it from going into saturation, thereby reducing the

storage time. Several sub-families have evolved in the Schottky TTL family to offer several

speed-power products to meet a wide variety of design requirements. These sub-families

are:

 Low-power Schottky TTL (LSTTL)

 Fairchild Advanced Schottky TTL (FAST)

 Advanced Low Power Schottky TTL (ALSTTL)

 Advanced Schottky TTL (ASTTL)

We will explore the characteristics of the TTL family in this Learning Unit.

Diodes

A semiconductor diode is fabricated from two types, p-type and n-type, of semiconductor

material that are brought into contact with each other. The point of contact between the p

and n materials is called p-n junction. Actually, a diode is fabricated from a single

monolithic crystal of semiconductor material in which the two halves are doped with

different impurities to give them p-type and n-type properties. A real diode can be modelled

as shown in the figure 1.

 It is an open circuit when it is reverse biased (we ignore its leakage current)

 It acts like a small resistance, Rf, called the forward resistance, in series with Vd,

called a diode drop, a small voltage source.

 The forward diode drop would be about 0.6 V and Rf is about 25 Ω.

Reverse bias Forward bias

FIG. 1: Model of a real diode

Diode action is exploited to perform logical operations. The circuit shown in the figure 2

performs AND function if 0-2 V (Low) input is considered logic 0 and 3-5 V (High) input is

considered as logic 1. When both A and B inputs are High, the output X will be High. If any

one of the inputs is at Low level, the output will also be at Low level.

 FIG.2: Diode AND gate

Bipolar Junction Transistor

A bipolar junction transistor is a three terminal device and acts like a current-controlled

switch. If a small current is injected into the base, the switch is “on”, that is, the current

will flow between the other two terminals, namely, collector and emitter. If no current is put

into the base, then the switch is “off” and no current flows between the emitter and the

collector. A transistor will have two p-n junctions, and consequently it could be pnp

transistor or npn transistor. An npn transistor, found more commonly in IC logic circuits, is

shown in the figure 3 in its common-emitter configuration.

 FIG. 3: Common emitter configuration of an npn transistor

The relations between different quantities are given as in the following:

 Ib = (VIN - 0.6)/R1

 IC = β . Ib

 VCE = VCC - IC . R2

 = VCC - β . Ib . R2

 = VCC - β(VIN - 0.6).R2/R1

where β is called the gain of the transistor and is in the range of 10 to 100 for typical

transistors. Figure 4 shows a logic inverter from an npn transistor in the common-emitter

configuration. When the input voltage VIN Low, the output voltage is High, and vice versa.

FIG. 4: Transistor inverter

When the input of a saturated transistor is changed, the output does not change

immediately; it takes extra time, called storage time, to come out of saturation. In fact,

storage time accounts for a significant portion of the propagation delay in the earlier TTL

families. Present day TTL logic families reduce this storage time by placing a Schottky diode

between the base and collector of each transistor that might saturate.

Schottky Barrier Diode

A Schottky Barrier Diode (SBD) is illustrated in figure 5. It is a rectifying metal-

semiconductor contact formed between a metal and highly doped N semiconductor.

FIG. 5: Schottky Barrier -Diode

The valence and conduction bands in a metal overlap making available a large number of

free-energy states. The free-energy states can be filled by any electrons which are injected

into the conduction band. A finite number of electrons exist in the conduction band of a

semiconductor. The number of electrons depends mainly upon the thermal energy and the

level of impurity atoms in the material. When a metal-semiconductor junction is formed,

free electrons flow across the junction from the semiconductor, via the conduction band,

and fill the free-energy states in the metal. This flow of electrons builds a depletion

potential across the barrier. This depletion potential opposes the electron flow and,

eventually, is sufficient to sustain a balance where there is no net electron flow across the

barrier. Under the forward bias (metal positive), there are many electrons with enough

thermal energy to cross the barrier potential into the metal. This forward bias is called “hot

injection.” Because the barrier width is decreased as forward bias VF increases, forward

current will increase rapidly with an increase in VF.

When the SBD is reverse biased, electrons in the semiconductor require greater energy to

cross the barrier. However, electrons in the metal see a barrier potential from the side

essentially independent of the bias voltage and small net reverse current will flow. Since

this current flow is relatively independent of the applied reverse bias, the reverse current

flow will not increase significantly until avalanche breakdown occurs. A simple metal/n-

semiconductor collector contact is an ohmic contact while the SBD contact is a rectifying

contact. The difference is controlled by the level of doping in the semiconductor material.

Current in SBD is carried by majority carriers. Current in a p-n junction is carried by

minority carriers and the resultant minority carrier storage causes the switching time of a p-

n junction to be limited when switched from forward bias to reverse bias. A p-n junction is

inherently slower than an SBD even when doped with gold. Another major difference

between the SBD and p-n junction is forward voltage drop. For diodes of the same surface

area, the SBD will have a larger forward current at the same forward bias regardless of the

type of metal used. The SBD forward voltage drop is lower at a given current than a p-n

junction. Figure 6 illustrates the forward current-voltage characteristic differences between

the SBD and p-n junction.

FIG. 6: Characteristics of SBD and pn junction diodes

Schottky Transistor

The Schottky transistor makes use of two earlier concepts: Baker clamp and the Schottky-

Barrier-Diode (SBD). The Schottky clamped transistor is responsible for increasing the

switching speed. The use of Baker Clamp, shown in the figure 7, is a method of avoiding

saturation of a discrete transistor.

 FIG. 7: Baker Clamp

The germanium diode forward voltage is 0.3 V to 0.4 V as compared to 0.7 V for the base-

emitter junction silicon diode. When the transistor is turned on, base current drives the

transistor toward saturation. The collector voltage drops, the germanium diode begins to

conduct forward current, and excess base drive is diverted from the base-collector junction

of the transistor. This causes the transistor to be held out of deep saturation, the excess

base charge not stored, and the turn-off time to be dramatically reduced. However, a

germanium diode cannot be incorporated into a monolithic silicon integrated circuit.

Therefore, the germanium diode must be replaced with a silicon diode which has a lower

forward voltage drop than the base-collector junction of the transistor. A normal p-n diode

will not meet this requirement. An SBD can be used to meet the requirement as shown in

the figure 8.

FIG.8: The Schottky-Clamped Transistor

The SBD meets the requirements of a silicon diode which will clamp a silicon npn transistor

out of saturation.

BASIC NAND GATE

The familiarization with a logic family is acquired, in general, through understanding the

circuit features of a NAND gate. The circuit diagram of a two-input LSTTL NAND gate,

74LS00, is shown in the figure 9.

D1 and D2 along with 18 KΩ resistor perform the AND function. Diodes D3 and D4 do

nothing in normal operation, but limit undesirable negative excursions on the inputs to a

signal diode drop. Such negative excursions may occur on High-to-Low input transitions as

a result of transmission-line effects. Transistor Q1 serves as an inverter, so the output at its

collector represents the NAND function. It also, along with its resistors, forms a phase

splitter that controls the output stage. The output state has two transistors, Q3 and Q4,

only one of which is on at any time. The TTL output state is sometimes called a totem-pole

output. Q2 and Q5 provide active pull-up and pull-down to the High and Low states,

respectively. Transistor Q5 regulates current flow into the base of Q4 and aids in turning Q4

off rapidly. Transistors Q3 and Q2 constitute a Darlington driver, with Q3 not being

permitted to saturate. The network consisting of Schottky diodes D3 and D4 and a 5 KΩ

resistor is connected to the output and aids in charging and discharging load capacitance

when Q3 and Q4 are changing states. Transistor Q4 conducts when the output is in Low

state.

FIG. 9: Low Power Schottky NAND (74LS00)

The FAST Schottky TTL family provides a 75-80% power reduction compared to standard

Schottky TTL and yet offers 20-40% improved circuit performance over the standard

Schottky due to the MOSAIC process. Also, FAST circuits contain additional circuitry to

provide a flatter power/frequency curve. The input configuration of FAST uses a lower input

current which translates into higher fan-out. The NAND gate of FAST family is shown in the

figure 10.

The F00 input configuration utilises a p-n diodes (D1 and D2) rather than pnp-transistor.

The p-n diode offers a much smaller capacitance and results in much better ac noise

immunity at the expense of increased input

current

FIG. 10: FAST NAND (74F00)

Figure 11 shows one gate in 74ALS00A quad 2-input NAND gate parallel-connected pnp

transistors Q1 and Q2 are used at the input. These transistors reduce the current flow, IR,

when the inputs are low and thus increase fan out. If inputs A, B, or both are low, then the

respective pnp transistors turn on because their emitters are then more positive than their

bases. If at least one of the inputs is low, the corresponding pnp transistor conducts,

making the base of Q3 low and keeping Q3 off. If both the inputs A and B are high, both

switches are open and Q3 turns on. Q3 drives Q4 (by emitter follower action), and Q4

drives the output totem pole. Schottky diodes D3, D4 and D5 are used to speed the

switching and do not affect the logic. Note that the output and the inputs have Schottky

protective diodes. Figure 12 shows one gate in 74AS00 gate.

FIG. 11: ALS NAND gate
(74ALS00A)

FIG. 12: ASTTL NAND gate (74AS00)

Note that the input logic circuitry is essentially the same as that in 74ALS00 gate, as is the

output totem pole. The additional circuitry between input and output improves switching

speeds using sophisticated drivers and feedback networks

The ALS and AS families incorporate the following features:

1. Full Schottky clamping of all saturating transistors virtually eliminating storing

excessive base charge and significantly enhancing turn-off time of the transistors.

2. Elimination of transistor storage time provides stable switching times across the

temperature range.

3. An active turn-off is added to square up the transfer characteristic and provide

improved high-level noise immunity.

4. Input and output clamping is implemented with Schottky diodes to reduce negative-

going excursions on the inputs and outputs. Because of its lower forward voltage

drop and fast recovery time, the Schottky input diode provides improved clamping

action over a conventional p-n junction diode.

5. The ion implantation process allows small geometries giving less parasitic

capacitances so that switching times are decreased.

6. The reduction of the epi-substrate capacitance using oxide isolation also decreases

switching times.

Digital Electronics
Module 3: CMOS Family

N.J. Rao
Indian Institute of Science

id9126783 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M3L3 2

CMOS Family

CMOS has often been called the ideal technology.
It has
� Low power dissipation
� High noise immunity to power supply noise
� Symmetric switching characteristics
� Large supply voltage tolerance

December 2006 N.J.Rao M3L3 3

CMOS Family

Reducing power requirements leads to
� Reduction in the cost of power supplies
� Simplifies power distribution
� Possible elimination of cooling fans
� A denser PCB
� Ultimately lower cost of the system

December 2006 N.J.Rao M3L3 4

History of CMOS

� Operation of a MOS transmission was understood long
before bipolar transistor was invented

� As its fabrication could not be monitored, development of
MOS circuits lagged bipolar circuits considerably

� Initially they were attractive only in selected applications.
� At present CMOS circuits are used from SSIs to VLSIs

December 2006 N.J.Rao M3L3 5

MOS transistor

� The basic building blocks in CMOS logic circuits are MOS
transistors.
� A MOS transistor can be viewed as a 3-terminal device
that acts like a voltage-controlled resistance

Vin

December 2006 N.J.Rao M3L3 6

MOS transistor

� An input voltage, applied to one terminal, controls the
resistance between the remaining two terminals.

� In digital applications, a MOS transistor is operated so
that its resistance is always either very high (and the
transistor �off�) or very low (and the transistor is always
�on�).

December 2006 N.J.Rao M3L3 7

Types of MOS transistors

There are two types of transistors
� NMOS transistor that uses n-channel
� PMOS transistor that uses p-channel

December 2006 N.J.Rao M3L3 8

NMOS Transistor

VGS in NMOS device is normally zero or positive.
If VGS = 0 then the resistance from drain to source (RDS) is
very high, of the order of mega ohm or more.
When VGS is made positive RDS can decrease to a very low
value, of the order of 10 ohms.

December 2006 N.J.Rao M3L3 9

PMOS Transistor

VGS is normally zero or negative.
If VGS is zero, then the resistance from source to drain
(RDS) is very large
When VGS is negative RDS can decrease to a very low
value.

*DWH

'UDLQ

9*6

6RXUFH

December 2006 N.J.Rao M3L3 10

Gate of a MOS transistor

� It has very high impedance
� Gate is separated from the source and drain by an

insulating material with a very high resistance.
� Gate voltage creates an electric field that enhances or

retards the flow of current between source and drain.
This is the �field effect� in a MOSFET.

� The high resistance between the gate and the other
terminals keeps the gate current to values lower than a
microampere irrespective of the gate voltage.

December 2006 N.J.Rao M3L3 11

Gate of a MOS transistor (2)

� The gate current is called �leakage current�.
� The gate of a MOS transistor is capacitively coupled to

the source and drain.
� In high speed circuits, the power needed to charge and

discharge these capacitances on each input signal
transition accounts for a non trivial portion of a circuit�s
power consumption.

December 2006 N.J.Rao M3L3 12

Basic CMOS Inverter circuit

� NMOS and PMOS transistors are used together in a
complementary way to form CMOS logic

� The power supply voltage VDD, typically is in the range of
2- 6 V, and is most often set at 5.0 V for compatibility
with TTL circuits.

December 2006 N.J.Rao M3L3 13

Basic CMOS Inverter circuit (2)

0VOnOff5.0

5VOffOn0.0

V
OUT

Q2Q1V
IN

When VIN is at 0.0 V, the lower n-channel MOSFET Q1 is OFF since its
VGS is 0, but the upper p-channel MOSFET Q2 is ON since its VGS

would be -5.0 V
VOUT at the output terminal would be +5.0 V.
Similarly when VIN is at 5.0 Q1 will be ON presenting a small
resistance, while Q2 will be OFF presenting a large resistance.
VOUT would be 0 V

December 2006 N.J.Rao M3L3 14

Inverter as per the bubble convention

December 2006 N.J.Rao M3L3 15

CMOS NAND Gate

LOFFOFFONONHH

HONOFFOFFONLH

HOFFONONOFFHL

HONONOFFOFFLL

XQ4Q3Q2Q1BA

December 2006 N.J.Rao M3L3 16

CMOS NOR Gate

LOFFOFFONONHH

LONOFFOFFONLH

LOFFONONOFFHL

HONONOFFOFFLL

XQ4Q3Q2Q1BA

December 2006 N.J.Rao M3L3 17

Non-inverting Gates

$;� �$

9''

Buffer AND Gate

December 2006 N.J.Rao M3L3 18

Buffering

Unbuffered NAND

Most of the CMOS families are buffered.

Buffered NAND

December 2006 N.J.Rao M3L3 19

Advantages of buffering

� Output characteristics of all devices are more easily
made identical.

� Multistage gates will have better noise immunity due to
their higher gain caused by having several stages from
input to output.

� Output impedance of buffered gates is unaffected by
input conditions

December 2006 N.J.Rao M3L3 20

Advantages of buffering (2)

� Single stage gates implemented would require large
transistors due to the large output drive requirements.

� Large devices would have a large input capacitance
associated with them. This would affect the speed of
circuits driving into an unbuffered gate, especially when
driving large fan outs.

� Buffered gates have small input transistors and
correspondingly small input capacitance.

� Internal stages are much faster than the output stage
and speed lost by buffering is relatively small.

December 2006 N.J.Rao M3L3 21

Transmission Gates

� A p-channel and n-channel transistor pair can be used
as a logic-controlled switch.

� When EN is High there is a low impedance connection
(as low as 5 W) between points A and B.

� When EN is Low, points A and B are disconnected.
� Propagation delay from A to B is very short.

December 2006 N.J.Rao M3L3 22

2-input multiplexer with
transmission gate

When S is Low, the B is connected to X, and
when S is High, A is connected to X.

December 2006 N.J.Rao M3L3 23

CMOS Input and Output Structures

� CMOS family offers a Hex inverter with Schmitt inputs
(74HC14).

� It offers a hysterisis of 1.5 V when operated at 5 V.

December 2006 N.J.Rao M3L3 24

CMOS tri-state buffer

HONOFFHH

LOFFONLH

Hi-ZOFFOFFHL

Hi-ZOFFOFFLL

OUTQ2Q1AEN

December 2006 N.J.Rao M3L3 25

Open-drain CMOS NAND gate

A

B

X A B Q1 Q2 X

L L
L
H
H

 H
 L on off open

H

 off off open
 off on open

on on L

A
B

X

December 2006 N.J.Rao M3L3 26

Open-drain CMOS NAND gate
driving a load

A
B C

D

X

Y

R = 1.5 K 

December 2006 N.J.Rao M3L3 27

CMOS Logic Families

� 4000-series
� High Speed CMOS (75HC CMOS)
� High Speed TTL compatible CMOS (75HCT CMOS)
� HC CMOS can use any power supply voltage between 2

and 6 V.
� Lowering the supply voltage is effective, since most

CMOS power dissipation is CV2f

December 2006 N.J.Rao M3L3 28

CMOS Logic Families (2)

� AC (Advanced CMOS) ACT (Advanced CMOS, TTL
compatible) were introduced in mid-1980s.

� FCT (Fast CMOS, TTL compatible) introduced in 1990s
� The family combines circuit innovations with smaller

transistor geometries to produce devices that are even
faster than AC and ACT while reducing power
consumption and maintaining full compatibility with TTL.

December 2006 N.J.Rao M3L3 29

Subfamilies of FCT CMOS

� FCT-T and FCT2-T
� These families represent a �technology crossover point�

that occurred when the performance achieved using
CMOS technology matched that of bipolar technology,
and typically one third the power.

� Both the logic families are TTL compatible

December 2006 N.J.Rao M3L3 30

Logical Levels

 2 3 V C1
3 VC

V0.40.20.52.40.72FCT

V2.40.70.1V
CC

-0.10.82ACTMOS

V1.41.40.1V
CC

-0.11.53.5ACMOS

V2.40.70.1V
CC

-0.10.82HCTMOS

V1.41.40.1V
CC

-0.11.53.5HCMOS

V1.61.60.01V
CC

-0.14000B

NM HIGH

@V
CC

=5V

NM LOW

@V
CC

=5V

V
OLMAX

V
OHMIN

V
ILMAX

V
IHMIN

Family

December 2006 N.J.Rao M3L3 31

Noise Margins

Voltage levels associated with CMOS gates
VIL(max) = 30% VDD
VOH(min) = VDD - 0.1 V
VIH(min) = 70% VDD

December 2006 N.J.Rao M3L3 32

Input and Output Current Levels

mA48 @0.5 V-15 @ 2.4 V-0.0050.00574FCT

mA24 @0.4 V-24@V
CC

-0.8-0.0010.00174ACT

mA24 @0.4 V-24@V
CC

-0.8-0.0010.00174AC

mA4 @ 0.4 V-4 @V
CC

-0.80.0010.00174HCT

mA4 @0.4-4 @V
CC

-0.8-0.0010.00174HC

mA0.4@0.4 V-1.6 @2.5 V0.0010.0014000b +5

I
OL

I
OH

I
IL

I
IH

Output currentsInput currentsCMOS

Families

mailto:@0.5
mailto:@0.4
mailto:@0.4
mailto:@0.4-4
mailto:mA0.4@0.4
mailto:@2.5

December 2006 N.J.Rao M3L3 33

Fan out

For HCMOS

� IILmax is +1 A in any state
� IOHmax = -20 A and IOLmax = 20 A
� Low-state fan out is 20
� High-state fan out is 20
� If we are willing to work with slightly degraded output

voltages, which would reduce the available noise
margins, we can go for a much larger fan out

December 2006 N.J.Rao M3L3 34

Dynamic Electrical Behavior

Speed depends on transition times and propagation delay
The rise and fall times of an output of CMOS IC depend on
� ON transistor resistance
� Load capacitance

December 2006 N.J.Rao M3L3 35

Dynamic Electrical Behavior (2)

Load capacitance comes from
� Output circuits including a gate�s output transistors
� Internal wiring and packaging, have capacitances

associated with them (of the order of 2-10 pF)
� Wiring that connects an output to other inputs (about 1pF

per inch or more depending on the wiring technology)
� Input circuits including transistors, internal wiring and

packaging (2-15 pF per input).

December 2006 N.J.Rao M3L3 36

Dynamic Electrical Behavior (3)

� OFF transistor resistance would be about 1 M,
� ON resistance of p-channel transistor would be of the

order of 200 
� ON resistance of n-channel resistance would be about

100 
� We can compute the rise and fall times from the

equivalent circuits.

December 2006 N.J.Rao M3L3 37

Propagation Delay

In a CMOS device, the rate at which transistors change
state is influenced by

� Physics of the device
� Circuit environment including input-signal transition rate,

input capacitance, and output loading

December 2006 N.J.Rao M3L3 38

Speed Characteristics

605.8 (�138)FCTMOS

458ACTMOS

458.5ACMOS

2524HCTMOS

2522HCMOS

51604000B

Flip-Flop frequency

(MHz)

Prop. Delay

(ns)

Family

Device outputs in AC and ACT families have very fast rise and fall times.
Input signals should have rise and fall times of 3.0 ns (400 ns for HC and
HCT devices) and signal swing of 0V to 3.0V for ACT devices or 0V to
VDD for AC devices.

December 2006 N.J.Rao M3L3 39

Power Consumption

� A CMOS circuit consumes significant power only during
transition

� Sources of dynamic power dissipation
� Partial short-circuiting of the CMOS output structure
� Capacitive load (CL) on the output

December 2006 N.J.Rao M3L3 40

Partial short-circuiting

The amount of power consumed during transition
depends on
 the value of VDD

 the frequency of output transitions
Equivalent dissipation capacitance CPD as given by the

manufacturer
PT = CPD . V2

DD. f

CPD for a gate of HCMOS is about 24 pF

December 2006 N.J.Rao M3L3 41

Dissipation due to capacitive loading

� During Low-to-High transition, current passes through
the p-channel transistor to charge the load capacitance.

� During High-to-Low transition, current flows through the
n-channel transistor to discharge the load capacitor.

� During the transitions the voltage across the capacitor
changes by VDD.

� For each pulse there would be two transitions.

December 2006 N.J.Rao M3L3 42

Dissipation due to capacitive
loading (2)

As the currents are passing through the transistors, and
capacitor itself would not be dissipating any power, the
power dissipated due to the capacitive load is

2
L L DDP = C .V .f

December 2006 N.J.Rao M3L3 43

Total dynamic power dissipation

PD = PT + PL

=
=

2 2
PD DD L DDC .V .f+C .V .f

2
PD L DD(C +C).V .f

FCT does not have a CPD specification
ICCD specification gives the same information in a different
way.
The internal power dissipation due to transition at a given
frequency f can be calculated by the formula

PT = VCC . ICCD . f

December 2006 N.J.Rao M3L3 44

Power Dissipation Characteristics

pF60608585�138

pF30302424�00

Power dissipation (capacitance)

mW7.50.040.040.040.04�138

mW0.0050.0050.00250.0025�00

Quiescent power dissipation

UnitsFCTACTACHCTHCParameter

December 2006 N.J.Rao M3L3 45

Power Dissipation Characteristics (2)

mW3021.0421.0421.0421.04�138 at 10 MHz

mW91.541.542.142.14�138 at 1 MHz

mW7.50.190.190.250.25�138 at 100KHz

mW7.5057.5056.00256.0025�00 at 10 MHz

mW0.7550.7550.60250.6025�00 at I MHz

mW0.080.080.06250.0625�00 at 100KHz

Total power dissipation

mW1.51.51.52.12.1�138 at 1 MHz

mW0.750.750.60.6�00 at 1 MHz

Dynamic power dissipation

UnitsFCTACTACHCTHCParameter

CMOS FAMILY

CMOS has often been called the ideal technology. It has low power dissipation,

high noise immunity to power supply noise, symmetric switching characteristics

and large supply voltage tolerance. Reducing power requirements leads to

reduction in the cost of power supplies, simplifies power distribution, possible

elimination of cooling fans and a denser PCB, ultimately leading to lower cost of the

system. Though the operation of a MOS transmission was understood long before

bipolar transistor was invented, its fabrication could not be monitored.

Consequently development of MOS circuits lagged bipolar circuits considerably, and

initially they were attractive only in selected applications. In recent years,

advances in the design of MOS circuits have vastly increased their performance and

popularity. By far majority of the large scale integrated circuits such as

microprocessors and memories use CMOS. The usage of CMOS logic is increasing in

applications that use small and medium scale integrated circuits as CMOS circuits,

while offering functionality and speed similar to bipolar logic circuits, consume very

much less power.

CMOS LOGIC CIRCUITS

The basic building blocks in CMOS logic circuits are MOS transistors. A MOS

transistor can be received as a 3-terminal device that acts like a voltage-controlled

resistance, as shown in the figure 1.

Vin

FIG. 1: MOS transistor as a voltage controlled resistance

An input voltage applied to one terminal controls the resistance between the

remaining two terminals. In digital applications, a MOS transistor is operated so its

resistance is always either very high (and the transistor “off”) or very low (and the

transistor is always “on”). There are two types of MOS transistors n-channel and p-

channel. The circuit symbols for NMOS and PMOS transistors are shown in the

figure 2.

Drain

Source

Gate Gate

+ +

_- _-
Vgs Vgs

Drain

Source

 NMOS transistor PMOS transistor

FIG. 2: Circuit symbols of MOSFETs

The terminals are called gate, source and drain. The voltage from gate to source

(VGS) in NMOS device is normally zero or positive. If VGS = 0 then the resistance

from drain to source (RDS) is very high, of the order of mega ohm or more. When

VGS is made positive RDS can decrease to a very low value, of the order of 10 ohms.

In the PMOS transistor VGS is normally zero or negative. If VGS is zero, then the

resistance from source to drain (RDS) is very large, and when VGS is negative RDS

can decrease to a very low value. The gate of a MOS transistor has very high

impedance, as it is separated from the source and drain by an insulating material

with a very high resistance. However, the gate voltage creates an electric field that

enhances or retards the flow of current between source and drain. This is the “field

effect” in a MOSFET. The high resistance between the gate and the other terminals

keeps the gate current to values lower than a microampere irrespective of the gate

voltage. This current is called “leakage current”. The gate of a MOS transistor is

capacitively coupled to the source and drain. In high speed circuits, the power

needed to charge and discharge these capacitances on each input signal transition

accounts for a non trivial portion of a circuit’s power consumption.

Basic CMOS Inverter circuit: NMOS and PMOS transistors are used together in a

complementary way to form CMOS logic, as shown in the figure 3. The power

supply voltage VDD, typically is in the range of 2- 6 V, and is most often set at 5.0

V for compatibility with TTL circuits.

V DD

V

V

P Channel

N Channel

Q

Q

1

2IN

OUT 0.0
5.0

Q Q V
On
Off

Off
On

5V
0V

VIN 1 2 OUT

FIG. 3: CMOS Inverter

When VIN is at 0.0 V, the lower n-channel MOSFET Q1 is OFF since its VGS is 0, but

the upper p-channel MOSFET Q2 is ON since its VGS would be -5.0 V. Consequently

Q2 presents a small resistance while Q1 presents a large resistance. VOUT at the

output terminal would be +5.0 V. Similarly when VIN is at 5.0 Q1 will be ON

presenting a small resistance to ground while Q2 will be OFF presenting a large

resistance. The output terminal voltage (VOUT) would be 0 V. Obviously this circuit

behaves as an inverter.

As we associated a logic state 0 or 1 with a voltage, we can say when the input

signal is asserted Q1 is ON and Q2 is OFF, and when the input signal is not

asserted Q1 is OFF and Q2 is ON. We make use of this interpretation to further

simplify the circuit representation of MOSFETs, as shown in the figure 4. The

bubble convention goes along with the convention followed in drawing logic

diagrams.

Q1

Q2

VDD

VIN

VOUT

 FIG. 4 CMOS inverter drawn as per logic convention

CMOS NAND and NOR gates: Logic gates can be realised using CMOS circuits. A

k-input gate uses k p-channel MOSFETs and k n-channel MOSFETs. Figure 5 shows

a 2-input NAND gate. If either input is Low, the output X is High with low impedance

connection to VDD through the corresponding p-channel transistor, and the path to

the ground is blocked by the corresponding OFF n-channel MOSFET. If both inputs

are High, the two n-channel MOSFETs are ON and the two p-channel MOSFETs are

OFF. This is the operation required for the circuit to function as a NAND gate.

A B Q1 Q2 Q3 Q4 X
L L OFF OFF ON ON H
L H OFF ON ON OFF H
H L ON OFF OFF ON H
H H ON ON OFF OFF L

FIG. 5: 2-input CMOS NAND gate

A 2-input NOR gate is shown in figure 6. Only when A and B are Low the output X

is High and for all other combination of input levels the output is Low.

A B Q1 Q2 Q3 Q4 X
L L OFF OFF ON ON H
L H OFF ON ON OFF L
H L ON OFF OFF ON L
H H ON ON OFF OFF L

FIG. 6: 2-input CMOS NOR gate

X

VDD

Q2

Q1

Q4Q3

A

B A
B

x

A

B

X

V D D

Q 2Q 1

Q 3

Q 4

B
A

Non Inverting Gates: In all logic families, the simplest gates are inverters, and

the next simplest are NAND and NOR gates. It is typically not possible to design a

non-inverting gate with a smaller number of transistors than an inverting one.

CMOS non-inverting buffers and AND and OR gates are obtained by connecting an

inverter to the output of the corresponding inverting gate. Figure 7 shows a non

inverting buffer and an AND gate

Buffer AND gate

FIG. 7: Non inverting Buffer and AND gate

Buffering: Most of the CMOS families are buffered. Buffering CMOS logic merely

denotes designing the IC so that the output is taken from an inverting buffer stage.

An unbuffered and buffered NAND gates are illustrated in the figure 8.

FIG. 8: Unbuffered and buffered NAND gates

There are several advantages to buffering. By using the standardised buffer, the

output characteristics of all devices are more easily made identical. Multistage

gates will have better noise immunity due to their higher gain caused by having

several stages from input to output. Also, the output impedance of an unbuffered

gate may change with input logic level voltage and input logic combination,

whereas buffered output are unaffected by input conditions. Single stage gates

implemented would require large transistors due to the large output drive

requirements. These large devices would have a large input capacitance associated

A X = A

VDD

A

B

V DD

A

B

X = A.B

X

VDD

Q2

Q1

Q4Q3

A

B

A

B

X = /(A.B)

with them. This would affect the speed of circuits driving into an unbuffered gate,

especially when driving large fan outs. Buffered gates have small input transistors

and correspondingly small input capacitances. One may think that a major

disadvantage of buffered circuits would be speed loss. It would seem that a two or

three stage gate would be two to three times slower than a buffered one. However,

internal stages are much faster than the output stage and speed lost by buffering

is relatively small.

Transmission Gates: A p-channel and n-channel transistor pair can be used as a

logic-controlled switch. This circuit, shown in the figure 9, is called a CMOS

transmission gate.

/EN

EN

A B

FIG. 9: CMOS transmission gate

A transmission gate is operated so that its input signals EN and /EN are always at

opposite levels. When EN is High and /EN is Low, there is a low impedance

connection (as low as 5 Ω) between points A and B. When EN is Low and /EN is

High, points A and B are disconnected. Once transmission gate is enabled, the

propagation delay from A to B (or vice versa) is very short. Because of their short

delays and conceptual simplicity, transmission gates are often used internally in

larger-scale CMOS devices such as multiplexers and flip-flops. For example, figure

10 shows how transmission gates can be used to create a 2-input multiplexer

A

B

S

X

VDD

.

FIG. 10: Two-input multiplexer using CMOS transmission gates

When S is Low, the B is connected to X, and when S is High, A is connected

to X. While it may take some nanoseconds for the transmission gate to

change its state, the propagation delay from input to output of the gate

would be very small.

CMOS Input and Output Structures: CMOS family like other logic families has

provision for accepting slow changing inputs, offering three-state outputs, and for

wired logic connection. CMOS family offers a Hex inverter with Schmitt inputs

(74HC14). It offers a hysterisis of 1.5 V when operated at 5 V. It can transform

slowly changing input signals into sharply defined, jitter-free output signals. In

addition, they have a greater noise margin than conventional inverters.

A circuit diagram (including schematics for gates) for a CMOS three-state buffer is

shown in the figure 11. When enable (EN) is Low, both output transistors are off,

and the output is in the Hi-Z state. Otherwise, the output is High or Low as

controlled by the “data” input A. The figure also shows logic symbol for a three-

state buffer. There is a leakage current of up to 10 µA associated with a CMOS

three-state output in its Hi-Z state. This current, as well as the input currents of

receiving gates, must be taken into account when calculating the maximum

number of devices that can be placed on a three-state bus. That is, in the Low or

High state, an enabled three-state output must be capable of sinking or sourcing

10µA of leakage current for every other three-state output on the bus, as well as

sinking the current required by every input on the bus.

EN A Q1 Q2 OUT
L L OFF OFF Hi-Z
L H OFF OFF Hi-Z
H L ON OFF L
H H OFF ON H

FIG. 11: CMOS three-state buffer

The p-channel transistors in CMOS output structures provide active pull-up.

These transistors are omitted in gates with open-drain outputs, such as the

NAND gate in figure 12.

A

B

X A B Q1 Q2 X
L L
L
H
H

 H
 L on off open

H

 off off open
 off on open

on on L

A
B

X

FIG.12: Open-drain CMOS NAND gate

VDD

OUT

EN

A

Q1

Q2

EN

A OUT

The drain of the topmost n-channel transistor is left unconnected internally,

so if the output is not Low it is “open”, as indicated in the figure 13. The

underscored diamond in the symbol is sometimes used to indicate an open-

drain output. This is similar to the “open-collector” output in TTL logic

families. An open-drain output requires an external pull-up resistor to provide

passive pull-up to the High level. For example, figure 13 shows an open drain

CMOS NAND gate, with its pull-up resistor, driving a load.

A
B C

D

X

Y

R = 1.5 K Ω

FIG. 13: Open-drain CMOS NAND gate driving a load

CMOS LOGIC FAMILIES

The first commercially successful CMOS family was 4000-series CMOS.

Although 4000-series circuits offered the benefit of low power dissipation,

they were fairly slow and were not easy to interface with the most popular

logic family of the time, bipolar TTL. Thus, the 4000 series was supplanted in

most of applications by CMOS families that had better performance

characteristics. The first two 74-series CMOS families are HC (High-speed

CMOS) and HCT (High-speed CMOS, TTL compatible). HC and HCT both have

higher speed and better current sinking and sourcing capability. The HCT

family uses a power supply voltage VDD of 5 V and can be intermixed with TTL

device, which also use a 5-V supply.

The HC is mainly optimised for use in systems that use CMOS logic

exclusively, and can use any power supply voltage between 2 and 6 V. A

higher voltage is used for higher speed, and lower voltage for lower power

dissipation. Lowering the supply voltage is especially effective, since most

CMOS power dissipation is proportional to the square of the voltage (CV2f).

Even when used with a 5 V power supply, HC devices are not quite

compatible with TTL. In particular, HC circuits are designed to recognise

CMOS input levels. The output levels produced by TTL devices do not quite

match this range, so HCT devices use the different input levels. These levels

are established in the fabrication process by making transistors with different

switching threshold, producing the different transfer characteristics.

Two more CMOS families, known as AC (Advanced CMOS) and ACT

(Advanced CMOS, TTL compatible) were introduced in mid-1980s. These

families are fast, comparable to ALSTTL, and they can source or sink more

current than most of the TTL circuits can. Like HC and HCT, the AC and ACT

families differ only in the input levels that they recognise; their output

characteristics are the same. Also like HC/HCT, AC/ACT outputs have

symmetric output drive.

In the early 1990s, yet another CMOS family was launched. The FCT (Fast

CMOS, TTL compatible) family combines circuit innovations with smaller

transistor geometries to produce devices that are even faster than AC and

ACT while reducing power consumption and maintaining full compatibility

with TTL. There are two subfamilies, FCT-T and FCT2-T. These families

represent a “technology crossover point” that occurred when the performance

achieved using CMOS technology matched that of bipolar technology, and

typically one third the power. Both the logic families are TTL compatible,

which means that they conform to the industry-standard TTL voltage levels

and threshold point (1.5 V), and operate from a 5 Volt VCC power source. All

inputs are designed to have a hysterisis of 200 mV (low-to-high threshold of

1.6 V and high-to-low threshold of 1.4V). This hysteresis increases both the

static and dynamic noise immunity, as well as reducing the sensitivity to

noise superimposed on slowly rising or falling inputs. Individual logic gates

are not manufactured in the FCT families. Just about the simplest FCT logic

element is a 74FCT138/74FCT138T decoder, which has six inputs, eight

outputs and contains the equivalent of about twelve 4-input gates internally

ELECTRICAL BEHAVIOUR OF CMOS CIRCUITS

This section presents the electrical characteristics of CMOS families. The

electrical characteristics refer to DC noise margins, fan out, speed, power

consumption, noise, electrical discharge, open drain outputs and three state

outputs.

Logical Levels and Noise Margins: The generated voltage levels given by

the manufacturing data sheet for HCMOS circuits operating at VDD = 5 V, are

given in the Table 1. The input parameters are mainly determined by the

switching threshold of the two transistors, while the output parameters are

determined by the ON resistance of the transistors. These parameters apply

when the device inputs and outputs are connected only to other CMOS

devices. The dc voltage levels and noise margins of CMOS families are given

in the Table 1.

TABLE 1: DC Characteristics of CMOS Families

Family VIHMIN VILMAX VOHMIN VOLMAX NM LOW
@VCC =5V

NM HIGH
@VCC=5V

Units

4000B 2 3 V C
1
3 VC VCC-0.1 0.01 1.6 1.6 V

HCMOS 3.5 1.5 VCC-0.1 0.1 1.4 1.4 V

HCTMOS 2 0.8 VCC-0.1 0.1 0.7 2.4 V

ACMOS 3.5 1.5 VCC-0.1 0.1 1.4 1.4 V

ACTMOS 2 0.8 VCC-0.1 0.1 0.7 2.4 V

FCT 2 0.7 2.4 0.5 0.2 0.4 V

These dc noise margins are significantly better than those associated with

TTL families. As CMOS circuits can be operated with VDD = 2 V to VDD = 6 V

the voltage levels associated with CMOS gates may be expressed as

 VIL(max) = 30% VDD

 VOH(min) = VDD - 0.1 V

 VIH(min) = 70% VDD

Regardless of the voltage applied to the input of a CMOS inverter, the input

currents are very small. The maximum leakage current that can flow,

designated as II max, is + 1µA for HCMOS with 5 V power supply. As the load

on a CMOS gate could vary, the output voltage would also vary. Instead of

specifying the output impedance under all conditions of loading the

manufacturers specify a maximum load for the output in each state, and

guarantee a worst-case output voltage for that load. The load is specified in

terms of currents. The input and output currents are given in the Table 2.

TABLE 2: Input and Output Current Levels of CMOS Families

CMOS
Families

Input currents Output currents Units

 IIH IIL IOH IOL

4000b +5 0.001 0.001 -1.6@2.5 V 0.4@0.4 V mA

74HC 0.001 -0.001 -4 @VCC-0.8 4@0.4 mA

74HCT 0.001 0.001 -4@VCC-0.8 4@ 0.4 V mA

74AC 0.001 -0.001 -24 @VCC-0.8 24@0.4 V mA

74ACT 0.001 -0.001 -24 @VCC-0.8 24 @0.4 V mA

74FCT 0.005 -0.005 -15@ 2.4 V 48@0.5 V mA

These specifications are given at voltages which are normally associated with TTL

gates. If the current drawn by the load is smaller, the voltage levels would improve

significantly. This happens when CMOS gates are connected to CMOS loads.

It is important to note that in a CMOS circuit the output structure by itself

consumes very little current in either state, High or Low. In either state, one of the

transistors is in the high impedance OFF state. When no load is connected the only

current that flows through the transistors is their leakage current. With a load,

however, current flows through both the load and the ON transistor, and power is

consumed in both.

Fan out: The fan out of a logic gate is the number of inputs that the gate can drive

without exceeding its worst-case loading specifications. The fan out depends not

only on the characteristics of the output, but also on the inputs that it is driving.

When a HCMOS gate is driving HCMOS gates, we note that IILmax is +1 µA in any

state, and IOHmax = -20 µA and IOLmax = 20 µA. Therefore, the Low-state fan out is

20 and High-state fan out is 20 for HCMOS gates. However, if we are willing to

work with slightly degraded output voltages, which would reduce the available

noise margins, we can go for IOHmax and IOLmax of 4.0 mA. This would mean that an

HCMOS gate can drive as many as 4000 HCMOS gates. But in actuality this would

not be true, as the currents we are considering are only the steady state currents

and not the transition currents. The actual fan out under degraded load conditions

would be far less than 4000. During the transitions, the CMOS output must charge

or discharge the capacitance associated with the inputs that it derives. If this

capacitance is too large, the transition from Low to High (or vice versa) may be too

slow causing improper system operation.

CMOS DYNAMIC ELECTRICAL BEHAVIOUR

Both the speed and the power consumption of CMOS devices depend on to a large

extent on AC or dynamic characteristics of the device and its load, that is, what

happens when the output changes between states. The speed depends on two

factors, transition times and propagation delay.

The rise and fall times of an output of CMOS IC depend mainly on two factors, the

ON transistor resistance and the load capacitance. The load capacitance comes

from three different sources: output circuits including a gate’s output transistors,

internal wiring and packaging, have capacitances associated with them (of the

order of 2-10 pF); wiring that connects an output to other inputs (about 1pF per

inch or more depending on the wiring technology); and input circuits including

transistors, internal wiring and packaging (2-15 pF per input). The OFF transistor

resistance would be about 1 MΩ, the ON resistance of p-channel transistor would

be of the order of 200 Ω, and the ON resistance of n-channel resistance would be

about 100 Ω. We can compute the rise and fall times from the equivalent circuits.

Several factors lead to nonzero propagation delays. In a CMOS device, the rate at

which transistors change state is influenced both by the semiconductor physics of

the device and by the circuit environment including input-signal transition rate,

input capacitance, and output loading. The speed characteristics of CMOS families

are given in the Table 3.

TABLE 3: Speed Characteristics of CMOS families

Family Prop. Delay
(ns)

Flip-Flop
frequency
(MHz)

4000B 160 5

HCMOS 22 25

HCTMOS 24 25

ACMOS 8.5 45

ACTMOS 8 45

FCTMOS 5.8(‘138) 60

Device outputs in AC and ACT families have very fast rise and fall times. Input

signals should have rise and fall times of 3.0 ns (400 ns for HC and HCT devices)

and signal swing of 0V to 3.0V for ACT devices or 0V to VDD for AC devices.

Obviously such signal transition times are a major source of analog problems,

including switching noise and “ground bounce”.

Power Consumption: A CMOS circuit consumes significant power only during

transition, that is dynamic power dissipation is more. One source of dynamic power

dissipation is the partial short-circuiting of the CMOS output structure. When the

input voltage is changing from one state to the other, both the p-channel and n-

channel output transistors may be partially ON, creating a series resistance of 600

Ω or less. During this transition period, current flows through the transistors from

VDD to ground. The amount of power consumed in this way depends on the value of

VDD, the frequency of output transitions, and an equivalent dissipation capacitance

CPD as given by the manufacturer.

 PT = CPD . V2
DD. f

PT is the internal power dissipation given in watts, VDD is the supply voltage in

volts, f is frequency of output transitions in Hz, and CPD is the power dissipation

capacitance in farads. CPD for a gate of HCMOS is about 24 pF. This relationship is

valid only if the rise and fall times of the input signal are within the recommended

maximum values.

Second source of dynamic power dissipation is the CMOS power consumption due

to the capacitive load (CL) on the output. During the Low-to-High transition,

current passes through the p-channel transistor to charge the load capacitance.

Likewise, during the High-to-Low transition current flows through the n-channel

transistor to discharge the load capacitor. During these transitions the voltage

across the capacitor changes by + VDD. For each pulse there would be two

transitions. As the currents are passing through the transistors, and capacitor itself

would not be dissipating any power, the power dissipated due to the capacitive

load is

2

DD
L L

VP = C . .2f
2

 2
L L DDP = C .V .f

The total dynamic power dissipation of a CMOS circuit is the sum of PT and PL:

 PD = PT + PL

 = 2 2
PD DD L DDC .V .f+C .V .f

 = 2
PD L DD(C +C).V .f

In most applications of CMOS circuits, CV2f power is the main type of power

dissipation. While CV2f type of power dissipation is also consumed by the bipolar

circuits like TTL, but at low to moderate frequencies it is insignificant compared to

the static power dissipation of bipolar circuits.

Unlike other CMOS families, FCT does not have a CPD specification. However, ICCD

specification gives the same information in a different way. The internal power

dissipation due to transition at a given frequency f can be calculated by the formula

 PT = VCC . ICCD . f

This family also makes different speed grades of the same function available.

Power dissipation characteristics of CMOS families operated at 5V are given in the

Table 4.

TABLE 4: Power Dissipation Characteristics of CMOS Families

Parameter HC HCT AC ACT FCT Units

Quiescent power
dissipation

‘00 0.0025 0.0025 0.005 0.005 mW

‘138 0.04 0.04 0.04 0.04 7.5 mW

 Power dissipation
capacitance

‘00 24 24 30 30 pF

‘138 85 85 60 60 pF

Dynamic power
dissipation

‘00 at 1 MHz 0.6 0.6 0.75 0.75 mW

‘138 at 1 MHz 2.1 2.1 1.5 1.5 1.5 mW

Total power
dissipation

‘00 at 100KHz 0.0625 0.0625 0.08 0.08 mW

‘00 at I MHz 0.6025 0.6025 0.755 0.755 mW

‘00 at 10 MHz 6.0025 6.0025 7.505 7.505 mW

‘138 at 100KHz 0.25 0.25 0.19 0.19 7.5 mW

‘138 at 1 MHz 2.14 2.14 1.54 1.54 9 mW

‘138 at 10 MHz 21.04 21.04 21.04 21.04 30 mW

Digital Electronics
Module 3: ECL Family

N.J. Rao
Indian Institute of Science

id9619281 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M3L4 2

ECL Family

� Bipolar families prevent saturating transistors using
Schottky diodes across the base-collector junctions

� Current Mode Logic (CML) structure can be used to
prevent saturation

� CML produces a small voltage swing, less than a volt,
between low and high levels

� CML switches current between two possible paths
depending on the output state

� Introduced by General Electric in 1961
� The concept was refined by Motorola and others to

produce present day�s 10K, 100K (ECL) families

December 2006 N.J.Rao M3L4 3

ECL Family (2)

� They offer propagation delays as short as 1 ns
� They are not as popular as TTL and CMOS mainly

because they consume too much power
� High power consumption has made the design of ECL

super computers, such as CRAY as a challenge in
cooling technology

� ECL has poor power-speed product, does not provide a
high level of integration

� ECL signals have fast edge rates requiring design for
special transmission line effects

� ECL circuits are not directly compatible with TTL and
CMOS

December 2006 N.J.Rao M3L4 4

Basic CML Circuit

V

R2
330

R1

300

Q1 Q2 VV

V

R3
1.3K







OUT1

OUT2

IN

IN
BB

E

VEE = 0

= 5V

= 4V

� Two transistors are connected as a differential amplifier with a
common emitter resistor R3.
� Input Low and High levels, are defined to be 3.6 and 4.4 V.
� It produces output Low and High levels 0.6 V higher (4.2 and 5.0 V)

December 2006 N.J.Rao M3L4 5

2-input OR/NOR gate

Q1 Q2 V

V

R3

EE

BB

V E

= 4VQ3

V

V

V

A

B

R1 R2

OUT2

OUT1

CC = 5V

A

B

OUT1
OUT2

This circuit shown cannot meet the input/ output
loading requirements effectively

December 2006 N.J.Rao M3L4 6

ECL 10K OR/NOR gate (ECL10102)

Q1 Q2

V

R3

E E

V E

Q3

A

B

R1 R2

V CC 1=0

D1

D2

R8
4.9k

V CC 2=0

R6
6.1k77950k

R2R1
50k 





245220 

RL1RL2

Vout1

Vout2

December 2006 N.J.Rao M3L4 7

ECL Families (Motorola)

MECL I in 1962
� It offered 8 ns gate propagation delay and 30 MHz toggle

rates
MECL II in 1966
� This family offered 4 ns propagation delay for the basic

gate, and 70 MHz toggle rates
MECL III in 1968
� It offered 1 ns gate propagation delays and flip-flop

toggle rates higher than 500 MHz

December 2006 N.J.Rao M3L4 8

ECL Families (Motorola)

MECL 10K series in 1971
� It offered circuits with 2 ns propagation delays. Edge

speed was slowed down to 3.5 ns.
MECL 10KH in 1981
� It provides a propagation delay of 1 ns with edge

speed at 1.8 ns and used process called MOSAIC.
MECL 100K
� This family offers functions different from those offered

by 10K series. This family operates with a reduced
power supply voltage -4.5 V, has shorter propagation
delay of 0.75 ns, and transition time of 0.7 ns. The
power consumption per gate is about 40 mW.

December 2006 N.J.Rao M3L4 9

Subfamilies of MECL 10K

� 10100 and 10500 series (propagation delay of 2 ns,
edge speed of 3.5 ns and flip-flop toggle rate of 160
MHz)

� 10200 and 10600 series (propagation delay of 1.5 ns,
edge speed of 2.5 ns and flip-flop toggle rate of 250
MHz)

� 10800 series (propagation delay of 1 - 2.5 ns and edge
speed of 3.5 ns)

December 2006 N.J.Rao M3L4 10

Electrical Characteristics
Values are specified at TA = 25oC and the nominal power supply
voltage of VEE = -5.2 V.
Its common-mode-rejection feature offers immunity against
power-supply noise injection.

130150-1.03-1.62-1.47-1.16ECL 100K

150150-0.98-1.63-1.48-1.13ECL 10KH

125155-0.98-1.63-1.475-1.105ECL 10K

125155-0.98-1.63-1.475-1.105MECL III

NM High
mV

NM Low
mV

VOLmax
V

VOH max
V

VILmax
V

VIHmin
V

Family

December 2006 N.J.Rao M3L4 11

Loading Characteristics

55552650.5ECL 100K

22222650.5ECL 10KH

22222650.5ECL 10K

25253500.5MECL III

IOHmax
mA

IOLmax
mA

IIHmax
mA

IILmax
mA

Family

December 2006 N.J.Rao M3L4 12

Transition Times/ Propagation Delays

3000.750.75ECL 100K

2501.81ECL 10KH

NA3.51 - 2.5ECL 10K (10800)

2502.51.5ECL 10K
(10200&10600)

1603.52ECL 10K
(10100&10500)

50011MECL III

Flip-flop toggle rate
MHz

Edge speed
ns

Prop. delay
ns

Family

December 2006 N.J.Rao M3L4 13

Power Consumption

3040ECL 100K

2525ECL 10KH

4.62.3ECL 10K (10800)

3725ECL 10K
(10200&10600)

5025ECL 10K
(10100&10500)

6060MECL III

Power-speed
product
pJ

Power dissipation
per gate

mW

Family

December 2006 N.J.Rao M3L4 14

Key aspects of ECL

� Fast and balanced output edges
� Low output impedance
� High drive capability
� Differential or single-ended operation
Limiting factors of ECL
� Negative rails
� incompatibility with other devices
� Need for the terminating rail (VTT)
� Higher power dissipation

1

ECL Family

The key to propagation delay in bipolar logic family is to prevent the transistors in

a gate from saturating. Schottky families prevent the saturating using Schottky

diodes across the base-collector junctions of transistors. It is also possible to

prevent saturating by using a structure called Current Mode Logic (CML). Unlike

other logic families considered so far, CML does not produce a large voltage swing

between low and high levels. Instead, it has a small voltage swing, less than a

volt, and it internal switches current between two possible paths depending on

the output state.

The first CML logic family was introduced by General Electric in 1961. The concept

was refined by Motorola and others to produce today’s 10K, 100K Emitter

Coupled Logic (ECL) families. These ECL families are fast and offer propagation

delays as short as 1 ns. In fact, through out the evolution of digital circuit

technology, some type of CML has always been the fastest commercial logic

family. However commercial ECL families are not nearly as popular as TTL and

CMOS mainly because they consume too much power. In fact, high power

consumption has made the design of ECL super computers, such as CRAY as

much of a challenge in cooling technology as in digital design. In addition, ECL

has poor power-speed product, does not provide a high level of integration, has

fast edge rates requiring design for special transmission line effect, and is not

directly compatible with TTL and CMOS. But ECL family continues to survive and

in applications which require maximum speed regardless of cost.

ECL Circuits

Basic CML Circuit: The basic idea of current mode logic is illustrated by the

inverter/buffer circuit in the figure 1. This circuit has both inverting (OUT1) and

non-inverting output (OUT2). Two transistors are connected as a differential

amplifier with a common emitter resistor R3. Let the supply VCC = 5 V, VBB = 4 V

and VEE = 0 V. Input Low and High levels are defined to be 3.6 and 4.4 V. This

circuit produces output Low and High levels 0.6 V higher (4.2 and 5.0 V). When

VIN is high transistor Q1 is ON, but not saturated, and transistor Q2 is OFF. When

Q1 is ON VE is one diode drop lower than VIN, or 3.8 V. Therefore, current through

R3 is (3.8/1.3 KΩ) 2.92 mA. If Q1 has a β of 10, then 2.65 mA of this current

comes through the collector and R1, so VOUT1 is 4.2V (Low) since the voltage

across Q1 (= 4.2 - 3.8= 0.4 V) is greater than VCEsat,, Q1 is not saturated Q2 is off

because of its base to emitter voltage (4.0 - 3.8 = 0.2 V) is less than 0.6 V. Thus

VOUT2 is at 5.0 V (High) as no current passes through R2.

2

V

R2
330

R1
300

Q1 Q2 VV

V

R3
1.3K

Ω

Ω

Ω
OUT1
OUT2

IN

IN
BB

E

VEE = 0

= 5V

= 4V

FIG. 1: Basic CML inverter/buffer circuit

When VIN is Low, transistor Q1 is OFF, and Q2 is ON but not saturated. VE will be

one diode drop below VBB (4.0 - 0.6 = 3.4 V). The current trough R3 is (3.4/1.3

KΩ =) 2.6 mA. The collector current of Q2 is 2.38 mA for a β of 10. The voltage

drop across R2 is (2.38 x 0.33 =) 0.5 V, and VOUT2 is about 4.2 V. Since the

collector emitter voltage of Q2 is (4.2 - 3.4 =) 0.8V, it is not saturated. Q1 is off

because its base-emitter voltage is (3.6 - 3.4 =) 0.2 and is less than 0.6 V. Thus

VOUT1 is pulled up to 5.0 V through R1.

To perform logic with the basic unit of figure 1, we simply place additional

transistors in parallel with Q1. Figure 2 shows a 2-input OR/NOR gate. If any

input is High, the corresponding input transistor is active, and VOUT1 is Low (NOR

output). At the same time, Q3 is off, and VOUT2 is High (OR output). However, the

circuit shown in figure 2 cannot meet the input/output loading requirements

effectively.

3

FIG. 2: CML 2-input OR/NOR gate

ECL 10K Family: The most popular ECL family is designated as the ECL10K as it

has 5-digit designations to its ICs. The ECL 10K OR/NOR gate is shown in the

figure 3

Q1 Q2

V

R3

E E

V E

Q3

A

B

R1 R2

V CC 1=0

D1

D2

R8
4.9k

V CC 2=0

R6
6.1k77950k

R2R1
50k Ω ΩΩ

Ω

245220 Ω Ω

RL1RL2

Vout1

Vout2

 FIG. 3: Two-input ECL 10K OR/NOR gate (10102)

In this circuit, an emitter follower output stage shifts the output levels to match

the input levels and provides very high current driving capability, up to 50 mA per

output. An internal (R7, D1, D2, R8 and Q4) temperature, and voltage-

compensated bias network provides VBB (-1.29V) without the need for separate

external power supply. The family is designed to operate with VCC= 0 (GND) and

VEE = -5.2V. This improves noise immunity to power supply noise, because noise

4

on VEE is a “common mode” signal that is rejected by the input structure’s

differential amplifier.

A pull down resistor on each input ensures that of the input is left unconnected, it

is treated as Low. The emitter-follower outputs used in ECL 10K require external

pull-down resistors as shown in the figure. This is because of the fast

transmission times (typically 2ns). The short transmission times require special

attention as any interconnection longer than a few centimetres must be treated

as a transmission line. By removing the internal pull-down resistor, the designer

can now select a resistor that satisfies the pull-down requirements as well as

transmission line termination requirements. The simplest terminator for short

connections is to use a resistor in the range of 270 Ω to 2 KΩ.

ECL SUBFAMILIES

Motorola has offered MECL circuits in five logic families: MECL I, MECL II, MECL

III, MECL 10000 (MECL 10K), and MECL 10H000 (MECL 10KH). The MECL I family

was introduced in 1962, offering 8 ns gate propagation delay and 30 MHz toggle

rates. This was the highest performance from any logic family at that time.

However, this family required a separate bias driver package to be connected to

each logic function. The ten pin packages used by this family limited the number

of gates per package and the number of gate inputs. MECL II was introduced in

1966. This family offered 4 ns propagation delay for the basic gate, and 70 MHz

toggle rates. MECL II circuits have a temperature compensated bias driver

internal to the circuits, which simplifies circuit interconnections.

MECL III was introduced in 1968. They offered 1 ns gate propagation delays and

flip-flop toggle rates higher than 500 MHz. The 1 ns rise and fall times required a

transmission line environment for all but the smallest systems. For this reason, all

circuit outputs are designed to drive transmission lines and all output logic levels

are specified when driving 50-ohm loads. For the first time with MECL, internal

input pull down resistors are included with the circuits to eliminate the need to tie

unused inputs to VEE..

Motorola introduced MECL 10K series in 1971 with 2 ns propagation delays. In

order to make the circuits comparatively easy to use, edge speed was slowed

down to 3.5 ns. Subsequently, the basic MECL 10K series has been expanded by

a subset of devices with even greater speed. These subfamilies are 10100 and

10500 series (propagation delay of 2 ns, edge speed of 3.5 ns and flip-flop toggle

rate of 160 MHz), 10200 and 10600 series (propagation delay of 1.5 ns, edge

5

speed of 2.5 ns and flip-flop toggle rate of 250 MHz), and 10800 LSI family

(propagation delay of 1 - 2.5 ns and edge speed of 3.5 ns)

MECL 10KH family was introduced in 1981. This family provides a propagation

delay of 1 ns with edge speed at 1.8 ns. These speeds, which were attained with

no increase in power over MECL 10K, are due to both advanced circuit design

techniques and new oxide isolated process called MOSAIC. To enhance the

existing systems, many of the MECL 10KH devices are pin-out/functional

duplications of the MECL 10K family. Also, MECL 10K/10KH are provided with

logic levels that are completely compatible with MECL III. Another important

feature of MECL 10K/10KH is the significant power reduction over both MECL III

and the older MECL II. Because of the power reductions and advanced circuit

design techniques, the MECL 10KH family has many new functions not available

with the other families.

The latest entrant to the ECL family is ECL 100K, having 6-digit part numbers.

This family offers functions, in general, different from those offered by 10K series.

This family operates with a reduced power supply voltage -4.5 V, has shorter

propagation delay of 0.75 ns, and transition time of 0.7 ns. However, the power

consumption per gate is about 40 mW.

ELECTRICAL CHARACTERISTICS OF ECL FAMILY

The input and output levels, and noise margins of ECL gates are given in the

Table 1. These values are specified at TA = 25oC and the nominal power supply

voltage of VEE = -5.2 V.

TABLE 1: Voltage levels and noise margins of ECL family ICs

The noise margin levels are slightly different in High and Low states. This

specification by itself does not give complete picture regarding the noise

immunity of a system built with a particular set of circuits. In general, noise

immunity involves line impedances, circuit output impedances, and propagation

delay in addition to noise-margin specifications.

Family VIHmin
V

VILmax
V

VOH max
V

VOLmax
V

NM Low
mV

NM High
mV

MECL III -1.105 -1.475 -1.63 -0.98 155 125

ECL 10K -1.105 -1.475 -1.63 -0.98 155 125

ECL 10KH -1.13 -1.48 -1.63 -0.98 150 150

ECL 100K -1.16 -1.47 -1.62 -1.03 150 130

6

Loading Characteristics: The differential input to ECL circuits offers several

advantages. Its common-mode-rejection feature offers immunity against power-

supply noise injection, and its relatively high input impedance makes it possible

for any circuit to drive a relatively large number of inputs without deterioration of

the guaranteed noise margin. Hence, DC fan out with ECL circuits does not

normally present a design problem. Graphs given by the vendor showing the

output voltage levels as a function load current can be used to determine the

actual output voltages for loads exceeding normal operation.

Family IILmax

µA

IIHmax

mA

IOLmax

mA

IOHmax

mA

MECL III 0.5 350 25 25

ECL 10K 0.5 265 22 22

ECL 10KH 0.5 265 22 22

ECL 100K 0.5 265 55 55

Transition Times and Propagation Delays: The transition times and delays

associated with different ECL families are given in the following.

Family Prop. delay
ns

Edge speed
ns

Flip-flop
toggle rate

MHz
MECL III 1 1 500

ECL 10K
(10100&10500)

2 3.5 160

ECL 10K
(10200&10600)

1.5 2.5 250

ECL 10K
(10800)

1 - 2.5 3.5 NA

ECL 10KH 1 1.8 250
ECL 100K 0.75 0.75 300

The rise and fall times of an ECL output depend mainly on two factors, the

termination resistor and the load capacitance. Most of the ECL circuits typically

have a 7 ohm output impedance and are relatively unaffected by capacitive

loading on positive going output signal. However, the negative-going edge is

dependent on the output pull down or termination resistor. Loading close to a ECL

output pin will cause an additional propagation delay of 0.1 ns per fan-out load

7

with 50 ohm resistor to -2.0 Vdc or 270 ohms to -5.2 Vdc. The input loading

capacitance of an ECL 10K gate is about 2.9 pF. To allow for the IC connector or

solder connection and a short stub length 5 to 7 pF is commonly used in loading

calculations.

Power Consumption: The power dissipation of ECL functional blocks as

specified by the manufacturer does not include power dissipated in the output

devices due to output termination. The omission of internal output pull-down

resistors permits the use of external terminations designed to yield best system

performance. To obtain total operating power dissipation of a particular functional

block in a system, the dissipation of the output transistor, under load, must be

added to the circuit power dissipation. The power dissipation and power-speed

products of various ECL families are given in the Table 4

Family

Power dissipation
per gate

mW

Power-speed
product

pJ
MECL III 60 60

ECL 10K
(10100&10500)

25 50

ECL 10K
(10200&10600)

25 37

ECL 10K (10800) 2.3 4.6

ECL 10KH 25 25

ECL 100K 40 30

Digital Electronics
Module 4: Combinational Circuits:

An Introduction

N.J. Rao
Indian Institute of Science

id1254774 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M4L1 2

We are familiar with

� How to express a verbal logical statement as a logical
expression

� How to simplify a given logical expression using a variety
of tools

� How to pictorially represent a logical function in terms of
basic logic functions like AND, OR etc.

� How to perform a logical function using electronic circuits
when the binary variables are presented by voltage
levels

December 2006 N.J.Rao M4L1 3

Digital electronic circuits

Classified as:

 Combinational Circuits
 Sequential Circuits

December 2006 N.J.Rao M4L1 4

Combinational circuits

The output can be expressed as a logical expression in
terms of the input variables

� The present value of the output is dependent only on the
present values of the inputs

� All logical expressions consist of logical operations AND,
OR and NOT.

� Any logical expression can be realized using these three
types of electronic gates.

December 2006 N.J.Rao M4L1 5

Sequential Circuits

In a sequential circuit the outputs depend on

� The present inputs
� The sequence of all the past inputs

December 2006 N.J.Rao M4L1 6

Early era of digital design

�logic gates�

� were built with discrete devices
� were expensive
� consumed considerable power
� occupied significant amount of space on the printed

circuit board.
� minimisation of the number of gates was one of the

major design objectives

December 2006 N.J.Rao M4L1 7

Present day semiconductor
technology

� The integration levels are very high
� The delay times are very low and coming down all the

time
� Power consumed by them has been coming down.
� Minimization of printed circuit board area is the major

design objective

December 2006 N.J.Rao M4L1 8

Traditional minimisation methods

� Can help in locating problems like hazards and
racing

December 2006 N.J.Rao M4L1 9

Combinational SSI, MSI and LSIs

� Gates
� Multiplexers
� Demultiplexers
� Arithmetic Units
� Encoders and Code Converters
� Comparators
� Multipliers
� Programmable Logic Devices (PLDs)

December 2006 N.J.Rao M4L1 10

Hardware aspects: Electrical
Parameters

� propagation delays
� power consumption
� supply voltage levels
� currents
� tolerances (voltages and currents)
� loading
� margins (noise)

December 2006 N.J.Rao M4L1 11

Hardware aspects: Mechanical
Parameters

� Foot print
� Type of package
� Pin pitch (distance between two adjacent pins)
� Thermal resistance

December 2006 N.J.Rao M4L1 12

Present day context of
combinational circuits

� Interfacing (propagation delay should be minimum)
� The number of ICs of SSI and MSI level to be

considerably restricted

December 2006 N.J.Rao M4L1 13

Learning Objectives

� Analyse and design combinational circuits using
commercially available ICs belonging to LSTTL and
HCMOS/HCTMOS families

� Resolve issues related to interfacing
� Learn to use Polarized Mnemonic Conventions

Polarized Mnemonic
Convention

December 2006 N.J.Rao M4L1 15

Learning objectives

� Explain the polarized mnemonic conventions of IEEE for
representing logic variables and signals used in
combinational circuits.

� Implement different logic functions with different logic
gates.

� Explain the method of representing Mode signals and
binary data unambiguously.

� State the advantages of polarized mnemonic convention.

December 2006 N.J.Rao M4L1 16

Standard Convention

Polarised Mnemonic Convention and logic symbology as
per IEEE Std. 91/ ANSI Y32.14

The standard convention has two components:
� logic notation including signal designation,
� symbols for digital functional units, available as SSI and

MSI packages

December 2006 N.J.Rao M4L1 17

What is Truth Table?

$ % ;

�� �

� � �

� � �

� � �

Consider the OR function of two binary variables

Algebraic representation: Y = A + B

Truth table Logic Symbol

� It is simply a listing of the possible combinations of A and B
� Has nothing to do with truth or falsehood of the variables
� Appropriate to treat it as the input-output relation

December 2006 N.J.Rao M4L1 18

Logic variables represent Action

Examples of digital signals: START, LOAD, CLEAR etc.
� These are indicative of actions to be performed
� We do not establish Truth or Falsehood of something
It is appropriate to say
� �when the signal LOAD is Asserted, the intended action

of loading takes place�
� Asserted/ Not Asserted qualification is more

appropriate

December 2006 N.J.Rao M4L1 19

Interpretation of Truth Table

� Entry 0: The variable Not Asserted
� Entry 1: The variable Asserted

A B X
0 0 1
0 1 0
1 0 0
1 1 0

Read the first entry as
"X is Asserted when A AND B are Not Asserted" or
"X is Asserted when A is Not Asserted AND B is Not
Asserted".

December 2006 N.J.Rao M4L1 20

Reading Logic Expressions

Consider Y = A. B/. C + A. B. C + A. B/. C/

� The first term A.B/.C is to be read as "A B prime C",
� It is to be interpreted as "A Asserted AND B Not

Asserted AND C Asserted"
� A Not Asserted variable is shown in a logical expression

with a prime (/) next to the mnemonic for the variable.

December 2006 N.J.Rao M4L1 21

Electronic Circuits and Logic
Functions

� Electronic circuits are used to implement logic functions
� Currents and voltages are associated with these circuits
� Assertion and Not Assertion are associated with voltages
� Need to have a convention to associate voltages with

logic variables

December 2006 N.J.Rao M4L1 22

Signal Convention

� The voltage levels associated with logic variables are not
of a single value

� Normally a band of few hundred milli volts or even a few
volts are associated with a logic state

� The more positive of the two voltage levels (voltage
ranges) is designated as High Voltage (H)

� The less positive of the two is designated as Low
Voltage (L)

� The intended action can take place at either of the
voltage level

� This choice can be given to the designer

December 2006 N.J.Rao M4L1 23

Signal Convention(2)

Asserted High Signal
� It is Asserted when the voltage level is High (H) and Not

Asserted when the voltage level is Low (L)
Asserted Low Signal
� It is Asserted when its voltage level is Low (L) and Not

Asserted when the voltage level is High (H)

December 2006 N.J.Rao M4L1 24

Convention

� No qualifying symbol or letter is added if the variable is
Asserted High

LOAD, CLR etc.
� / is added before the mnemonic if the variable is

Asserted Low
/LOAD, /CLR

December 2006 N.J.Rao M4L1 25

Logic Gates

� Refer to physical electronic units that generate output
voltage levels in a well-defined relationship to the input
voltage levels

� A given gate may perform a variety of logical functions

December 2006 N.J.Rao M4L1 26

2-Input AND Gate

HHH

LLH

LHL

LLL

YBA

&

December 2006 N.J.Rao M4L1 27

AND Gate with AH variables

111

001

010

000

YBA

The Truth-Table gets modified as

� X is Asserted only when A AND B are Asserted
� This AND gate performs AND operation on the two input variables
which are Asserted High to produce an output that is Asserted High

December 2006 N.J.Rao M4L1 28

AND Gate with AL variables

000

110

101

111

/Y/B/A

The Truth-Table gets modified as

� /Y is Asserted when /A is Asserted OR /B is Asserted
� This AND gate performs OR operation on the two input variables
which are Asserted Low to produce an output that is Asserted Low

December 2006 N.J.Rao M4L1 29

2-Input OR Gate

HHH

HLH

HHL

LLL

YBA

>

December 2006 N.J.Rao M4L1 30

OR Gate with AH variables

111

101

110

000

YBA

The Truth-Table gets modified as

� X is Asserted only when A OR B are Asserted
� This OR gate performs OR operation on the two input variables
which are Asserted High to produce an output that is Asserted High

December 2006 N.J.Rao M4L1 31

OR Gate with AL variables

000

001

010

111

/Y/B/A

The Truth-Table gets modified as

� /Y is Asserted when /A is Asserted AND /B is Asserted
� This OR gate performs AND operation on the two input variables
which are Asserted Low to produce an output that is Asserted Low

December 2006 N.J.Rao M4L1 32

Logic Convention

� Positive Logic Convention: When all variables are
treated as Asserted High

� Negative Logic Convention: When all variables are
treated as Asserted Low

� Polarised Mnemonic Convention permits the designer to
have complete freedom in defining the Assertion levels
of all signals

December 2006 N.J.Rao M4L1 33

Negation/Polarity Indicator

� As per the IEEE Standard "o" (bubble) or a (small
triangle) is used as a negation/polarity indicator

We use the bubble to represent polarity

December 2006 N.J.Rao M4L1 34

Output Signals

Incorrect examples

Presence of the polarity indicator at the output: The signal
is as Asserted Low
Absence of the indicator at the output: The signal is as
Asserted High

Correct examples

December 2006 N.J.Rao M4L1 35

Input Signals

Polarity indicator at the input of a logic unit
� If an Asserted High (AH) variable is given as input to a

logic unit without polarising indicator, that variable
appears Asserted in the output logic expression.

� If an Asserted Low (AL) signal connected through a
polarity indicator, that variable appears as Asserted in
the output logic expression.

December 2006 N.J.Rao M4L1 36

Input Signals (2)

Asserted Low signal /LOCK and an Asserted High
signal PTRL are ANDed to generate an Asserted Low
output signal /STRT.

December 2006 N.J.Rao M4L1 37

Input Signals (3)

� An AL variable connected to a logic unit without a
polarity indicator appears as Not Asserted variable in the
logic expression for the output.

� An AH variable connected through a polarity indicator
appears as Not Asserted variables in the logic
expression for the output.

December 2006 N.J.Rao M4L1 38

Examples of Input Signal
Designations

/PRINCA = MINI/.CLR/.SEQ ACLR
SEQ A

MINI

PRINCA = MINI.MA.CLR/

MINI
MA
CLR

/PRIN1

/PRIN2
PRIN=PRIN1/+PRIN2

December 2006 N.J.Rao M4L1 39

Logic symbols in the Polarised
Mnemonic Notation

� The presence or absence of polarity indicators at
the outputs.

� The presence or absence of polarity indicators at
the inputs.

Each symbol has three distinct elements:
� Distinctive shaped logic symbol indicative of the logic
operation being performed,

for AND for OR

December 2006 N.J.Rao M4L1 40

Example

� The unit performs AND operation.
� The output variable is Asserted Low.
� The AND operation is performed on the Asserted Low

input signals

December 2006 N.J.Rao M4L1 41

Some good practices

� The use of symbols as shown should be avoided.

December 2006 N.J.Rao M4L1 42

Exceptions

Mode Signals
� Assigning Assertion levels is not meaningful
� These signals are indicative of more than one action.
� Different actions take place in both the states of the

signals.
� The two actions are mutually exclusive and one of the

actions is always implied

� Examples are R/W/, U/D/ and IO/M/.

December 2006 N.J.Rao M4L1 43

Read/Write (R/W) signal

R/W/:
� when the signal takes `High voltage' (H) it is indicative of

READ operation
� when it takes `Low voltage' (L) it is indicative of WRITE

operation

December 2006 N.J.Rao M4L1 44

Binary Data

� We can not use Asserted or Not Asserted conventions
with binary data

� Data line will either convey a numerical value of 0 or 1.
� A data line, designated with mnemonics like DBIT-4
� When it takes High voltage it is considered having a

numerical value of �1�
� When it takes Low voltage it is considered having a

numerical value of `0'.

December 2006 N.J.Rao M4L1 45

Unused Inputs

� All inputs of an IC may not be utilized
� Unused inputs will have to be tied at known states.
� In a 3-input OR gate that is used only as a 2-input OR

gate, the unused input should be kept in Not Asserted
state.

� A high voltage input is shown by the letter H and a low
voltage input is shown by the letter L.

December 2006 N.J.Rao M4L1 46

Examples of unused inputs

The voltage level at which the unused inputs get tied
to will depend on the assertion level of the signal.

COMBINATIONAL CIRCUITS

INTRODUCTION

We explored in the earlier learning units

• How to express a verbal logical statement as a logical expression

• How to simplify a given logical expression using a variety of tools

• How to pictorially represent a logical function in terms of basic logic functions like
AND, OR etc.

• How to perform a logical function using electronic circuits when the binary
variables are presented by voltage levels

An electronic circuit can perform a logical function in extremely short periods of time
(time taken from the application of inputs to the appearance of outputs). These
periods are of the order of nanoseconds. We mainly use electronic circuits to perform
logic functions because of their high speeds.

The electronic circuits that perform logical functions are seen under two broad
categories:

o Combinational

o Sequential

The output of a combinational circuit can be expressed as a logical expression in
terms of the input variables. The present value of the output of a combinational
circuit is dependent only on the present values of the inputs.

The logical expressions mainly consist of logical operations AND, OR and NOT.
Therefore, it is possible to physically realise any logical expression using these three
types of electronic gates.

In the early era of digital design “logic gates” built with discrete devices, were
expensive, consumed considerable power and occupied significant amount of space
on the printed circuit board on which these devices were mounted. In those early
days the minimisation of the number of gates was one of the major design objectives
of Logic and Switching Theory. The semiconductor technology, however, made these
gates available in IC packages that occupy very little space and at very low costs. As
the technologies improved

• The delay times associated with the logical devices have been coming down

• Power consumed by them has been coming down.

• More and more logic functions are getting integrated into a single package.

This has drastically reduced the number of ICs needed to realise a given function.
But the proportional cost of the printed circuit board on which these devices were
getting assembled has been increasing. Therefore, one of the main objectives of the
present day combinational circuit design is to reduce the printed circuit board area
needed for the logic circuits. This implies reduction of the number of IC packages
used rather than the number of gates.

Because of these changes in technologies, the design and minimisation methods
evolved by the traditional Logic and Switching Theory are not that relevant. It may
not be necessary to master the finer aspects of these methods, but a good working
knowledge of these methods is still needed to analyse and design combinational
circuits, even as per the new criteria. Besides minimisation, these methods can

greatly help in locating problems like hazards and racing, which are mainly the
consequence of variations in the electrical characteristics of the physical devices
used.

Combinational integrated circuits are available in a wide functional and complexity
range in SSI, MSI and LSI packages. These may be classified as:

• Gates

• Multiplexers

• Demultiplexers

• Arithmetic Units

• Encoders and code converters

• Comparators

• Multipliers

• Programmable Logic Devices (PLDs)

A digital designer must get himself thoroughly familiar with the functional and
hardware aspects of these combinational ICs. The hardware aspects relate to
electrical parameters

• propagation delays

• power consumption

• supply voltage levels

• currents

• tolerances (noise, voltages and currents)

• loading

Mechanical parameters are also important. These include

• foot print

• type of package

• pin pitch (distance between two adjacent pins)

• thermal resistance

The design of any digital circuit is not merely limited to the functional aspects. For
example the combinational circuits find applications, in the context of the present
day microprocessors, mainly for the interfacing applications. In such applications the
propagation delay should be made minimum. The designer will have to use less
number of levels of gating and choose the appropriate logic family. With the real
estate at the printed circuit board level becoming more and more expensive the
number of ICs of SSI and MSI level have to be considerably restricted.

In this module you will mainly learn to analyze and design combination circuits using
commercially available Gates, Arithmetic Units, Multiplexers, and Demultiplexers
belonging to both LSTTL and HCMOS/HCTMOS families. The issues related to
interfacing between circuits belonging to different logic families, as well as
interfacing with external world are also addressed.

As there are two logic states and two voltage levels to represent them electrically,
communication among digital designers can become very confusing if well-accepted

conventions do not exist. IEEE evolved standards for Logic Convention and
Dependency Notation for Medium Scale Integrated Circuits. While these conventions
and notations have limited utility when working with the present day PLDs and
FPGAs, it is advantageous to adhere to them whenever it is possible.

Initially we will clarify issues related to logic and signal conventions, and then
proceed to designing a variety of combinational circuits.

The objectives of this learning unit are

• Explain the polarized mnemonic conventions of IEEE for representing logic
variables and signals used in combinational circuits.

• Implement different logic functions with different logic gates.

• Explain the method of representing ‘mode’ signals and binary data
unambiguously.

• State the advantages of polarized mnemonic convention.

POLARIZED MNEOMONIC CONVENTION

You need to present your solution to a design problem in the form of a schematic
diagram. This schematic diagram will be used by the packaging designer to convert it
into production documentation. The schematic will also be used by the testing and
maintenance engineers. This interaction among many people concerned with a
digital system requires that all of them have the same understanding of the
functionality of the circuit. Therefore, we need a standard convention that
unambiguously conveys the intentions of the designer to all the concerned while
giving sufficient flexibility to the designer. Many such conventions were evolved in
different textbooks and by different organisations. However, no universally accepted
convention exists even today for drawing digital schematic diagram.

Polarised Mnemonic Convention and logic symbology as per IEEE Std. 91/ANSI
Y32.14, which is based on Dependency Notation, is the only international Standard
that has evolved. Here we get ourselves familiar with this convention.

Any standard convention has two components:

• logic notation including signal designation,

• symbols for digital functional units, available as SSI and MSI packages

You are only familiar with the simple logic functions and logic gates. You are urged
to make efforts to confine to the conventions presented here, rather than resorting
to exceptions. The reward for this additional effort is the ability to communicate
your design to others. As you work out more and more examples from the later
Modules, you should feel more comfortable with the convention.

Consider an OR function of two binary variables A and B.

Its algebraic representation is

 Y = A + B

Its truth table representation is

A B X
0 0 0
0 1 1
1 0 1
1 1 1

The symbolic representation is

The truth table presents a simple listing of the possible combinations of A and B
rather than having anything to do with truth or falsehood of the variables concerned.
It will be more appropriate if the truth table can be interpreted more as the input-
output relation of a logic function. With this understanding we will continue to use
the word truth table.

A digital system may more conveniently be considered as a unit that processes
binary input actions and generates binary output actions. Most hardware responses
generally are either responses to some physical operation or some conditions

resulting from physical action. For example many of the signals that you come
across in digital systems are of the type

• START

• LOAD

• CLEAR

These signals are indicative of actions to be performed rather than establishing the
Truth or Falsehood of something.

For example, to say when LOAD is true does not convey the intended meaning. It
appears more appropriate to say when the signal LOAD is Asserted, the intended
action, namely, loading takes place.

Therefore, Asserted/Not Asserted qualification is more meaningful and appropriate
than the True/False qualification in the case of signals that clearly indicate action.

The entries in the truth table can now be interpreted in a different manner.

• The entry 0 is to be read as the corresponding variable Not Asserted

• The entry 1 is to be read as the corresponding variable Asserted

Consider the Truth Table given in the following.

A B X
0 0 1
0 1 0
1 0 0
1 1 0

We read the first entry in the table as

"X is Asserted when A AND B are Not Asserted" or "X is Asserted when A is Not
Asserted AND B is Not Asserted".

Consider another example

 Y = A. B/. C + A. B. C + A. B/. C/

The first term A.B/.C, to be read as "A B prime C", is to be interpreted as "A Asserted
AND B Not Asserted AND C Asserted"

Try interpreting the other terms of the expression.

A Not Asserted variable will therefore be shown in a logical expression with a prime
(/) next to the mnemonic for the variable. Traditionally this is referred to as
complementation. Let us note that it sounds right, and is appropriate to say a
variable is Asserted or Not Asserted rather than Uncomplemented or Complemented.

Electronic Circuits and Logic Functions

We use electronic circuits to implement logic functions. There are currents and
voltages associated with these circuits. We now explore the issues related to
associating electrical variables with logic variables.

Signal Conventions

In an actual digital circuit the logic variables are represented as voltage levels.
However these voltage levels are not of a single value. Normally a band of few
hundred millivolts or even a few volts will be associated with a logic state.

The more positive of the two voltage levels (voltage ranges) is designated as High
Voltage (H)

The less positive of the two is designated as Low Voltage (L).

The intended action associated with a variable can take place at either of the voltage
levels. This can be given as a choice to the designer. If the choice is to be made
available, it is necessary to evolve a convention that unambiguously states at what
voltage level a variable gets Asserted.

If a signal is considered Asserted when the voltage level is High (H) and Not Asserted
when the voltage level is Low (L), it is designated as Asserted High signal.

Similarly if a signal is considered Asserted when its voltage level is Low (L) and Not
Asserted when the voltage level is High (H), it is designated as Asserted Low signal.

We will follow a simple convention:

No qualifying symbol or letter is added if the variable is Asserted High, for example
LOAD, CLR etc.

/ is added before the mnemonic if the variable is Asserted Low, for example /LOAD,
/CLR

Logic Gates

Logic gate refers to a unit of hardware that generates output voltage levels in a well-
defined relationship to the input voltage levels. A given gate may perform a variety
of functions depending upon the Assertion levels of the input and output signal
levels.

Consider an AND Gate

Figure shows a two input AND gate and the relationship between the input and
output voltage levels.

Let us assume the input and output variables are Asserted High. The corresponding
truth table can be written as;

A B X
0 0 0
0 1 0
1 0 0
1 1 1

We can draw the following conclusions from this truth table:

X is Asserted only when A AND B are Asserted

This AND gate performs AND operation on the two input variables which are Asserted
High to produce an output that is Asserted High.

If A, B and X are Asserted Low variables, then the truth-table for the same gate
would be

/A /B /X
1 1 1
1 0 1
0 1 1
0 0 0

From the truth table we notice that

/X is Asserted when /A is Asserted OR /B is Asserted.

This AND gate performs OR operation on its input variables which are Asserted Low.

Consider an OR gate

Figure shows a two input OR gate and the relationship between the input and output
voltage levels

≥

If A, B and X are Asserted High, then the truth-table can be written as

A B X
0 0 0
0 1 1
1 0 1
1 1 1

We can draw the following conclusions from this truth table:

• X is Asserted when A OR B is Asserted,

• This gate performs OR operation on the Asserted High variables.

When the variables A, B and X are Asserted Low, the Truth Table can be written as

/A /B /X
1 1 1
1 0 0
0 1 0
0 0 0

/X is Asserted only when /A AND /B are Asserted

This gate performs AND operation on Asserted Low variables.

In a similar manner each one of the available hardware gates can be used to
perform more than one logic operation. From these two examples it is clear that the
name given to the hardware gate corresponds to the function it performs on
Asserted High inputs to generate an Asserted High output.

Exercises:

1. Find out the function performed by a 2-input NAND gate if its input and
output variables are Asserted High?

2. Find out the function performed by a 2-input NAND gate if its input and
output variables are Asserted Low?

3. Find out the function performed by a 2-input NAND gate if its input variables
are Asserted High and its output variable is Asserted Low?

4. Find out the function performed by a 2-input NOR gate if its input and output
variables are Asserted High?

5. Find out the function performed by a 2-input NOR gate if its input and output
variables are Asserted Low?

6. Find out the function performed by a 2-input NOR gate if its input variables
are Asserted High and its output variable is Asserted Low?

7. Find out the function performed by a 2-input Ex-NOR gate if its input and
output variables are Asserted High?

8. Find out the function performed by a 2-input EX-NOR gate if its input and
output variables are Asserted Low?

9. Find out the function performed by a 2-input NOR gate if one of its input
variables is Asserted High and the other is Asserted Low, and its output
variable is Asserted High?

LOGIC CONVENTION

Logic variables can be Asserted High or Asserted Low. Therefore, depending on our
preference we can have different conventions.

• If all variables are treated as Asserted High, we call it as Positive Logic
Convention. Traditionally digital circuits were mostly designed with Positive
Logic Convention.

• If all variables are treated as Asserted Low, we call it as Negative Logic
Convention. Sometimes designers found it convenient to design some parts of
a digital circuit using Negative Logic Convention.

Whenever it became necessary to combine circuits designed under different
conventions there were always possibilities of confusions in handling the interface.

• If the Assertion level a signal can be chosen by the designer we call it Polarised
Mnemonic Convention.

Negation/Polarity Indicator: As per the IEEE Standard "o" (bubble) or a (small
triangle) is used as a negation/polarity indicator as shown in the figure 1.

FIG. 1: Convention for indicating the negation of the output

We prefer to use the "o" (bubble) as the negation/polarity indicator.

Output Signals:

• The absence of the polarity indicator at that output of a logic unit defines that
signal at that point as Asserted High.

• The presence of the polarity indicator at the output of a logic unit defines the
signal at that point as Asserted Low

Typical correct examples are shown in the figure 2.

 /CLRSTRT

FIG 2: Correct method of indicating the polarities of the outputs

It is incorrect

• To designate an output signal as Asserted High if the polarity indicator is
present

• To designate a signal as Asserted Low if no polarity indicator is present

Examples of incorrect designation, which should never be used, are given in the
figure 3.

/CLRSTRT

FIG. 3: Incorrect method of indicating the output polarities

Input Signals:

The usage of polarity indicator at the input of a logic unit depends on whether the
variable connected to that input appears in the logic expression for the output
variable, as Asserted or Not Asserted.

• If an Asserted High (AH) variable is given as input to logic unit without polarising
indicator, that variable appears Asserted in the output logic expression.

• If an Asserted Low (AL) signal connected through a polarity indicator, that
variable appears as Asserted in the output logic expression.

In the example shown in the figure an Asserted Low signal /LOCK and an Asserted
High signal PTRL are ANDed to generate an Asserted Low output signal /STRT.

/STRT/LOCK
PTRL

• An AL variable connected to a logic unit without a polarity indicator appears as
Not Asserted variables in the logic expression for the output.

• An AH variable connected through a polarity indicator appears as Not Asserted
variables in the logic expression for the output.

Some examples are shown in the figure 4.

/PRINCA = MINI/.CLR/.SEQ ACLR
SEQ A

MINI

PRINCA = MINI.MA.CLR/

MINI
MA
CLR

/PRIN1
/PRIN2

PRIN=PRIN1/+PRIN2

FIG. 4: Examples of logic functions drawn as per polarized mnemonic convention

In interpreting the logic symbols in the Polarised Mnemonic Notation each symbol
can be considered to have three distinct elements:

• Distinctive shaped logic symbol indicative of the logic operation being
performed,

 for AND for OR.

 The presence or absence of polarity indicators at the outputs.

 The presence or absence of polarity indicators at the inputs.

Consider the following symbol;

• The unit performs AND operation.

• The output variable is Asserted Low.

• The AND operation is performed on the Asserted Low input signals.

Some good practices:

Though incompatibility at the inputs of any logic functional unit is permissible, its
usage should be avoided in the case of inverters as it is likely to lead to unnecessary
confusions without offering any advantage. The use of symbols shown in the
following figure should be avoided.

CLR /CLR /LOAD LOAD

Exceptions:

Mode Signals: There is one class of signals, designated as MODE signals, for which
assigning Assertion levels is not meaningful. These signals are indicative of more
than one action. Different actions take place in both the states of the signals.
Typical examples are R/W/, U/D/ and IO/M/.

In the case of R/W', when the signal takes `High voltage' (H) it is indicative of READ
operation, and when it takes `Low voltage' (L) it is indicative of WRITE operation.
These two operations are mutually exclusive and one of the operations is always
implied.

UP/DOWN/ signal is encountered in the counters. When U/D' takes H the counter
counts up, and when it takes L the counter counts down.

Usage of such signals should be kept to a minimum. A more convenient way of
designating such signals is to say MODE 0, MODE 1 etc.

Binary Data: Digital systems process binary data besides binary signals. It does
not sound appropriate to state that a data bit is Asserted or Not Asserted. The line
will assume High or Low voltage values as per the numerical value of that data bit.
In this sense it is more like the mode signal, which implies different actions in
different states of the signal. In this case of data line it will either convey a
numerical value of 0 or 1. A data line, designated with mnemonics like DBIT-4, is
always Asserted High signal, i.e., when it takes High voltage it is considered having a
numerical value of ‘1’ and when it takes Low voltage it is considered having a
numerical value of `0'.

Unused Inputs: Integrated circuits are available in standard SSI and MSI packages.
These ICs are designed to have widest possible applicability. Therefore, all the

inputs and capabilities may not be used every time an IC is incorporated into a
circuit. The unused inputs of such IC gates as well as sequential circuits will have to
be tied at known states. For example, if a 3-input OR gate is used only as a 2-input
OR gate, the unused input should be kept in Not Asserted state. This may
correspond to a high voltage or a low voltage. A high voltage input is shown by the
letter H and a low voltage input is shown by the letter L. A few examples with gates
are shown in the figure 5.

L
A1
B2

L
/A2
/B1

H
A1
B1

FIG. 5: Examples of designating unused inputs

The voltage level at which the unused inputs get tied to will depend on the assertion
level of the signal.

Digital Electronics
Module 4: Combinational Circuits:

Logic Functions

N.J. Rao
Indian Institute of Science

id1795722 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M4L2 2

Implementation of Logic Functions

� Logic functions can be implemented in any one of the
available logic families

� LSTTL and HCMOS family ICs are used for the medium
frequency applications

� FAST series and Schottky series ICs are used at higher
frequencies

With
 LSIs are becoming popular
 Cost per gate coming down drastically

Need for conventional type of minimisation is much less
Tractability of the design becomes more important

December 2006 N.J.Rao M4L2 3

Combinational ICs

� Gates are available as SSIs
� Adders, multiplexers, comparators and encoders are

available as MSIs
� SSI gates are mainly used for realising simple logic

functions normally encountered in interconnecting LSI
and MSI circuits.

December 2006 N.J.Rao M4L2 4

Available Gates

LSTTL FAST HCMOS
54/74LS 54/74F 54/74HC

NAND Gates
Quad 2-input NAND 00 00 00A
Triple 3-input NAND 10 10 10
Dual 4-input NAND 20 20 20
8-input NAND 30 --- 30
13-input NAND 133 --- 133

NOR Gates
Quad 2-input NOR 02 02 02A
Triple 3-input NOR 27 --- 27

December 2006 N.J.Rao M4L2 5

Available Gates (2)

LSTTL FAST HCMOS
54/74LS 54/74F 54/74HC

AND Gates
Quad 2-input AND 08 08 08A
Triple 3-input AND 11 11 11
Dual 4-input AND 21 21 ---
OR Gates
Quad 2-input OR 32 32 32A
Inverters
Hex inverter 04 04 04A

December 2006 N.J.Rao M4L2 6

Gate level implementation of logic
functions

� Logical expressions are available either in the SOP form
POS form.

Consider the expression:
STRT = PTRL.IGNI.NEUTR/.KICK + PTRL.IGNI.SLOP.

NEUTR/.LOCK/

It is not in canonical form

It can be realized by AND, OR and INVERT gates

December 2006 N.J.Rao M4L2 7

Realization by AND, OR and invert
Gates

December 2006 N.J.Rao M4L2 8

Using commercially AND,OR and
NOT gates

1(875

,*1,
375/

/2&.

6/23

.,&.

6757
+

We need a 3-level gating and it increases delay

December 2006 N.J.Rao M4L2 9

Realization by AO gates

December 2006 N.J.Rao M4L2 10

AOI gates

Dual 2-wide 2-input AOI 7451/LS51/S51/
HC51

Expandable Dual 2-input 2-wide AOI 7450
Expandable 2-wide 4-input AOI 74LS55
4-wide 2-input AOI 7454/LS54
Triple 3-input Expander 7461
Dual 4-input Expander 7460

4-2-3-2 input AOI 74S64

December 2006 N.J.Rao M4L2 11

Realization by AOI gates

� It does not necessarily reduce the chip count
� LSTTL family does not offer many varieties of AO or AOI

gates.

December 2006 N.J.Rao M4L2 12

Realization of SOP form by NANDs

December 2006 N.J.Rao M4L2 13

NAND and INVERTER realization

December 2006 N.J.Rao M4L2 14

Realization of POS form by NOR
gates

STRT = PTRL+IGNI+NEUTR+KICK) .
(PTRL+IGNI+SLOP+NEUTR+LOCK)

December 2006 N.J.Rao M4L2 15

Ex-OR realization

Parity checker
EP = A B C D E

It�s canonical version
EP =A B C D E + A B C / D / E + A B C / D E / + A B
C D / E / + A/ B / C / D / E + A / B / C / D E / +
A / B / C D / E / + A / B / C D E +A B / C / D / E / +
A B / C D E / + A B / C D / E + A B / C / D E +
A / B C / D / E / + A / B C D E / + A / B C D / E +
A / B C / D E

December 2006 N.J.Rao M4L2 16

Parity checker with Ex-OR

74LS86/HC86s (Quad 2-input EX-OR)

Multiple levels

December 2006 N.J.Rao M4L2 17

At this stage of design

Choice of gates in realising logical expressions should be
based on

� number of chips needed to realize the expression
� number of varieties of chips to be kept in the inventory
� number of levels of gating (the maximum number of

gates that an input signal has to pass through in a
circuit) needed to realize the expression

December 2006 N.J.Rao M4L2 18

Delay
Input-Output relationship of an inverter

December 2006 N.J.Rao M4L2 19

Manufacturer�s specifications

74LS04
TYP MAX

tPHL - 9.5 15 ns
tPLH - 9.5 15 ns

� Typical value is not a guaranteed value and hence
cannot be used as a design parameter

� The designer has to work with the worst case values for
these propagation delays

� Manufacturers do not guarantee any minimum delay

December 2006 N.J.Rao M4L2 20

Problems of minimum delay
Digital differentiator

What will be the width of the output pulse?
� With typical values: 9.5 x 3 = 28.5 ns.
� With maximum values: 15 x 3 = 45 ns.
� It can be any value from 0 to 45 ns.
Such a circuit cannot be used

December 2006 N.J.Rao M4L2 21

Delays and different realizations

Expression in SOP form can be realized
� By 2-level gating if the variables are available in their

Asserted High and Asserted Low versions
� By 3-level gating if the variables are not available in their

Asserted High and Asserted Low versions
In all other forms the delay is likely to be more

December 2006 N.J.Rao M4L2 22

Expression in non-canonical form

STRT = PTRL. IGNI. ([NEUTR.KICK] +
[SLOPE.NEUTR/.KICK/])

Minimization of propagation delay may not always be
a design objective.
The form of the expression may be chosen to make
the design more easily understandable.

December 2006 N.J.Rao M4L2 23

Specification of delay

Normally the delays for LSTTL family are defined at
T = 25o C, V = 5 volts, C = 15 pF, and R = 2 K 

For HCMOS family the delay times are specified at nine
operating points (three voltages and three temperatures)

VCC = 2.0 V, T: 25o C to -55o C, < 85o C, and < 125oC,
CL = 50 pF, Input tr = tf= 6 ns

VCC = 4.5 V, T: 25o C to -55o C, < 85o C, and < 125oC,
CL = 50 pF, Input tr = tf= 6 ns

VCC =6.0 V, T: 25o C to -55o C, < 85o C, and < 125oC,
CL = 50 pF, Input tr = tf= 6 ns

December 2006 N.J.Rao M4L2 24

Test circuit

Test circuit with which these delays are measured

VccVcc

Vout

D

DUT

December 2006 N.J.Rao M4L2 25

Load capacitance

Depends on
 PCB track width and the length,
 material of the laminate.

It varies from 20 pF to 150 pF.
Its effect is

 to increase the propagation delay
 to increase supply current spike amplitude during the

transients
Depending on the load circuit, capacitive loading and

temperature the propagation delays can increase by as
much as 15 ns.

December 2006 N.J.Rao M4L2 26

Dependence of the propagation
delay

Its dependence on the load capacitance

2 0 6 0 100 1 40 1 80 p F

1 0

2 0

3 0

C Load Capacitance
T



 t

t P H L

P L H (25o

(25 C)
o

D
el

ta
 T

ur
n

on
 d

el
ay

 (
ns

ec
)

 C)

December 2006 N.J.Rao M4L2 27

Glitches in the outputs

� The output is considered only after all the transients that
are likely to be produced when the state of the inputs
signals change.

� Finite delays make the transient response of a logic
circuit different from steady state behaviour.

� These transients occur because different paths from
input to output may have different propagation delays.

� These differences in the propagation delays can produce
short pulses, known as glitches.

� The steady state analysis does not predict this
behaviour.

December 2006 N.J.Rao M4L2 28

Hazard

� A hazard is said to exist when a circuit has the possibility
of generating a glitch.

� The actual occurrence of the glitch and its pulse width
depend on the exact delays associated with the actual
devices used in the circuit.

� Designer has no control over this parameter
� It is necessary to design that avoids the occurrence of

glitches.
� One simple method is not to look at the outputs until they

settle down to their final value.

December 2006 N.J.Rao M4L2 29

Example
Consider the expression X = A B/ + BC/D/

December 2006 N.J.Rao M4L2 30

Detection of hazard

� Hazard is caused by the propagation delay associated with the gate-1
� Let A and B be Asserted and C and D are Not-asserrted.
� When B changes from its Asserted state to its Not-asserted state with

the other variables remaining the same the output should remain in its
Asserted state.

� When B changes from 1-to-0 the output of the gate-5 changes from
1-to-0.

� The output of the gate-4 should change from 0-to-1 at the same time.
� But the delay associated with the gate-1 makes this transition of the

gate-4 output to happen a little later than that of gate-5.
� This can cause brief transition of X from 1-to-0 and then from 0-to-1

December 2006 N.J.Rao M4L2 31

Types of Hazards

� Static-1 hazard: When the output is expected to
remain in state 1 as per the steady state analysis it
makes a brief transition to 0
� Static-0 hazard: When the output is expected to
remain in state 0 as per the steady state analysis it it
makes a brief transition to 1.
� Dynamic hazard: When the output is supposed to
change from 0 to 1 (or 1 to 0), the circuit may go
through three or more transients to produce more
than one glitch

December 2006 N.J.Rao M4L2 32

Analysis using K-Map

X = A B/ + BC/D/

Hazard associated with the
1-to-1 transition occurred
when the change of state of
the variable B caused the
transition from one grouping
BC/D/ to another grouping
AB/.

December 2006 N.J.Rao M4L2 33

Detection of other hazards

� It is more difficult to detect the other three transitions.
� One result from Logic and Switching Theory states that a

two level gate implementation of a logical expression will
be hazard free for all transitions of the output if it is free
from the hazard associated with 1-to-1 transition.

� When the input variables change in such manner as to
cause a transition from one grouping to another
grouping, the 1-to-1 transition can occur

December 2006 N.J.Rao M4L2 34

Eliminating hazards

� In a two level gating realization of a
logical expression include all 1s which
are unit distance apart at least in one
grouping
� Group the terms ABC/D/and AB/C/D/

together
� This would lead to an additional gate
� The added gate defines the output
during the transition of B from one state
to the other

December 2006 N.J.Rao M4L2 35

Hazard free realization

X = AB/ + BC/D/  X = AB/ + BC/D/ + AC/D/

December 2006 N.J.Rao M4L2 36

Loading

� A logic gate has limited capacity to source and sink
current at its output.

� The output current capability of LSTTL gate is
IOH = - 400 mA at VOH = 2.7 volts
IOL = 4 mA at VOL = 0.4 volts

= 8 mA at VOL = 0.5 volts
IIH = 20 mA
IIL = -0.4 mA

� At VOL = 0.4 V LSTTL gates have 2.5 UL capability and
can drive 10 LSTTL gates

� At VOL = 0.5 V LSTTL gates have 5UL capability and can
drive 20 LSTTL gates

December 2006 N.J.Rao M4L2 37

HCMOS gates

Iin = + 0.1 A at VCC = 6.0 V
IOH = - 4.0 mA at VOH= 3.98 V with VCC = 4.5 V and T: -55o to 25o C

at VOH= 3.84 V with VCC = 4.5 V and T: < 85oC
at VOH = 3.70 V with VCC = 4.5 V and T: < 125oC

= - 5.2 mA at VOH = 5.48 V with VCC = 6.0 V and T: -55o to 25oC
at VOH = 5.34 V with VCC= 6.0 V and T: < 85oC
at VOH = 5.20 V with VCC = 6.0 V and T: < 125o C

IOL = 4.0 mA at VOL = 0.26 V with VCC = 4.5 V and T: 25o to -55o C,
at VOL = 0.33 V with VCC = 4.5 V and T: < 85oC
at VOL = 0.40 V with VCC = 4.5 V and T: < 125oC

= 5.2 mA at VOL = 0.26 V with VCC = 6.0 V and T: 25o to -55oC
at VOL = 0.33 V with VCC = 6.0 V and T: < 85oC

December 2006 N.J.Rao M4L2 38

Buffers

Quad 2 - input NAND Buffer - 74LS37

Dual 4 - input NAND Buffer - 74LS40
These have an output current capability of

IOL = 24 mA
IOH = - 1200mA

� They can drive as many as 60 LSTTL loads.
� Propagation delay: tPHL = tPLH = 24 n secs against the

usual 15 n secs
� To drive a load beyond the capability of a buffer, discrete

components have to be used.

December 2006 N.J.Rao M4L2 39

Output Voltages
The worst case VOH = 2.7 V in LSTTL family

= 5.5 V in case of HCMOS if 6.0 V is
used as power supply

If larger output voltages are required use open-collector gates

A

B

v c c

Open collector terminal can be connected to the

desired supply voltage(< V
OH(max)

) through a suitable load resistor

December 2006 N.J.Rao M4L2 40

Available open collector LSTTL
gates

� Quad 2-input NAND(OC) - 74LS03 [VOH (max) = 5.5 V, IOL = 8 mA]
� Quad 2-input NAND(OC) - 74LS26 [VOH (max) = 15 V, IOL = 18 mA]
� Hex Inverter (OC) - 74LS38 [VOH (max) = 5.5 V, IOL = 24 mA]
� Hex Inverter/Buffer (OC) - 7406 [VOH (max) = 30 V, IOL = 40 mA]

� Hex Buffer (OC) - 7407 [VOH (max)= 30 V, IOL = 40 mA]

The HCMOS and HCTMOS families do not offer many open drain
circuits

December 2006 N.J.Rao M4L2 41

Delay associated with OC gate
74LS26 operated at VCC of 5 V, RL = 2 K and CL = 15 pF
has tPLH = 32 ns (max) and a tPHL = 28 ns (max) against tPHL
= tPLH = 15 ns (max)

A

B

vcc vC

December 2006 N.J.Rao M4L2 42

Tristate Gates

OC gates have limitations
 with regard to the speed
 the distance between the modules,
 every signal line requires the usage of a suitable load

resistor
� Tristate logic elements provide a solution to the

problems of speed and power in bus organized digital
systems.

December 2006 N.J.Rao M4L2 43

TSL buffers

LSTTL HCMOS HCTMOS

� Quad 3-state noninverting buffer 74LS125A 74HC125A
� Quad 3-state noninverting buffer 74LS126A 74HC125A

� Octal 3-state inverting buffer/

line driver/line receiver 74LS240 74HC240A 74HCT240A
� Octal 3-state Noninverting buffer/

line driver/line receiver 74LS241 74HC241 74HCT241A

� Octal 3-state inverting bus

transceiver 74LS242 74HC242

� Octal 3-state noninverting buffer/

� line driver/line receiver 74LS244 74HC244A 74HCT244A
� Octal 3-state noninverting bus

transceiver 74LS245 74HC245A 74HCT245

December 2006 N.J.Rao M4L2 44

TSL buffers

� Hex 3-state noninverting buffer
with common enables 74LS365A 74HC365

� Hex 3-state inverting buffer
with common enables 74LS366A 74HC366

� Hex 3-state noninverting buffer
with 2-bit and 4-bit sections 74LS367A 74HC367

� Hex 3-state inverting buffer
with 2-bit and 4-bit sections 74LS368A 74HC368

� Octal 3-state inverting buffer/
line driver/line receiver 74LS540 74HC540 74HCT540

� Octal 3-state noninverting buffer/
line driver/line receiver 74LS541 74HC541 74HCT541

� Octal 3-state inverting bus
transceiver 74LS640 74HC640A 74HCT640

December 2006 N.J.Rao M4L2 45

TSL Gate: Characteristics

In Hi-z state the maximum leakage current at the output,
which occurs when it is tied to a gate whose output is
low-impedance High state, is +20 A
 sources 2.6 mA at a VOH of 2.7 V, and
 sinks 24 mA at VOL of 0.5 V and 12 mA at a

VOL of 0.4 V.
This will permit as many as 128 tristate logic (TSL) outputs

to be tied to a common bus and still provide enough
sourcing current to drive three LSTTL loads.

December 2006 N.J.Rao M4L2 46

TSL Gate: Characteristics

If one device is ON and 127 are OFF the following is valid:

127 x 20A = 2.54 mA
2.6 mA - 2.54 mA = 60A

= 3 x 20 A (LSTTL)
� The TSL output will be able to drive reliably a line over 3

meters long
� Provides a far superior High level noise immunity
� Delay from Inhibit to Output Disable, 20 ns(max)

� Delay from Enable to Low State, 25 ns(max)

INTRODUCTION

Logic functions that represent combinational functions can be implemented as
hardware in any one of the several logic families that are commercially available. The
logic families that are widely used for the medium frequency (up to about 25 MHz)
applications are

 LSTTL

 HCMOS

Higher frequency requirements are met by

 FAST series

 Schottky series

74LSTTL ICs are designed to operate over the commercial temperature range,
namely, from 0oC to 70oC.

54LS TTL ICs are functionally and pin-to-pin compatible with 74LS units, but operate
over the Military temperature range, namely, -55oC to +125oC.

HCMOS family ICs are also available in the same temperature range.

Before the advent of the microprocessors and programmable LSI combinational
circuits (PROMs, PLAs and PALs) digital designers had to be content with gates to
realise complex combinational circuits. It was, therefore, necessary to simplify the
expressions to reduce the number of gates or the number of ICs. When the number
of variables was smaller, designers used Karnaugh Maps or Variable Entered
Karnaugh Maps (VEM). When the variables were large in number it was necessary to
use computer based minimisation techniques.

With LSI combinational circuits becoming popular and the cost per gate coming down
drastically, the need for conventional type of minimisation is much less, the
tractability of the design became more important. The given logical expressions can
now be implemented, however complex they are, using programmable combinational
LSI circuits, and keep the chip count low.

Certain standard combinational functions like adders, multiplexers, comparators and
encoders are available in MSI packages. Therefore, realisation of these commonly
encountered combinational functions need not be done by gates. In view of the
availability of certain standard MSI and LSI circuits the SSI gates are mainly used for
realising simple logic functions normally encountered in interconnecting LSI and MSI
circuits. Design with these gates, therefore, is done predominantly on an intuitive
basis, and occasionally using K-Maps or VEMs.

Gates available in the 74 series of LS and HCMOS/HCTMOS families are listed in the
following.

 LSTTL FAST HCMOS HCTMOS
 54/74LS 54/74F 54/74HC 54/74HCT
NAND Gates
Quad 2-input NAND 00 00 00A ---
Triple 3-input NAND 10 10 10 ---
Dual 4-input NAND 20 20 20 ---
8-input NAND 30 --- 30 ---
13-input NAND 133 --- 133 ---

NOR Gates

Quad 2-input NOR 02 02 02A ---
Triple 3-input NOR 27 --- 27 ---

AND Gates
Quad 2-input AND 08 08 08A ---
Triple 3-input AND 11 11 11 ---
Dual 4-input AND 21 21 --- ---

OR Gates
Quad 2-input OR 32 32 32A ---

Inverters
Hex inverter 04 04 04A 04A

GATE LEVEL IMPLEMENTATION OF LOGIC EXPRESSIONS

Logical expressions are available in

 Sum-of-Product (SOP) form

 Product-of-Sum (POS) form

But the expressions we have may or may not be in canonical form. By canonical
form we mean sum of Minterms in the case of SOP form, and product of Maxterms in
the case of POS form. If they are not in the canonical form they would have been
arrived at either heuristically or after simplification through a K-Map or a Variable
Entered Map. Consider the following expression:

 STRT = PTRL.IGNI.NEUTR/.KICK + PTRL.IGNI.SLOP.NEUTR/.LOCK/

It may be noticed that this expression is not in canonical form. It can be realized by
AND, OR and INVERT gates as shown in the figure 1.

KICK

PTRL
IGNI
SLOP

NEUTR

LOCK

STRT

 FIG. 1: AND-OR-INVERT realization of a logical expression

We have several problems in realizing this circuit using commercially available gates.

 AND gates with five inputs are not available in LSTTL and HCMOS families.

We can add an extra AND gate with three inputs to overcome the problem of 5-input
AND gate. Consider the circuit shown in the figure 2. We now have an extra level of
gating. An extra level of gating would always add to the input to output delay. We
will address this problem of delay at a later state.

FIG. 2: Implementation of the expression for STRT with commercially available gates

Any logic expression in SOP form can essentially be considered to be ANDing of
different groups of variables and ORing the outputs of the AND gates. Therefore, it
was considered convenient to make available in the same package and AND and OR
gates suitably interconnected as shown in the figure 3.

KICK

PTRL
IGNI

SLOP
NEUTR

LOCK

STRT

H

KICK

PTRL
IGNI

SLOP
NEUTR

LOCK

STRT

H

L

H

L
H

U1

U1

U1

U1

U1

U2

U2

U3

 FIG. 3: AO realization of logical expression for START

In some cases the inverted output is made available by incorporating an INVERTER
along with AND and OR gates in the same package. Such gate packages are known
as AO (AND-OR) or AOI (AND-OR-INVERT) gates. In fact several such gates were
made commercially available. They include

 Dual 2-wide 2-input AOI 7451/LS51/S51/HC51

 4-wide 2-input AOI 7454/LS54

 4-2-3-2 input AOI 74S64

But there is problem here. It is not always possible to have the required number of
inputs or AND groupings in a given AO or AOI gate. It was, therefore, thought some
provision could be made to expand the number of inputs to the OR function. AO
gates with expansion facility and the expander gates include

Expandable Dual 2-input 2-wide AOI 7450

 Expandable 2-wide 4-input AOI 74LS55

 Triple 3-input Expander 7461

 Dual 4-input Expander 7460

Consider AOI implementation of the logical expression for STRT, as in the figure 3.
We notice that AOI realization does not necessarily reduce the chip count.

We considered earlier that a NAND gate can be used to realize either an AND
function or an OR function according to the assertion levels of the input signals.
Therefore, any logical expression in SOP form can be realized by two levels of NAND
gates.

 The first level NAND gates perform the AND operation and produce Asserted
Low outputs.

 The second level NAND gate performs OR operation on Asserted Low inputs to
generate an Asserted High output.

The realization of the expression for START, in the polarized mnemonic notation, is
shown in the figure 4.

STRTU1

U2

IGNI
NEUTR

H

U1
L

L

KICK

H
H

SLOP

/LOCK

PTRL

/NEUTR
IGNI
PTRL

 FIG. 4: NAND realization of a logical expression in SOP form

If variables are available both in Asserted High and Asserted Low versions, any
logical expression can be realized in its SOP form through two level NAND gates. If
variables are not available in both the versions then an additional level of gating,
with NANDS used as INVERTERS, would become necessary. Such a realization of the
expression for START is shown in the figure 5.

STRTU1

U1

IGNI

NEUTR

H

U1

U3

U3

L

L

KICK

H
H

SLOP
LOCK

PTRL

FIG. 5: NAND and INVERTER realization of a logical expression in SOP form with
variables in AH form

The major advantage of realizing logical expressions through NAND gates is that the
inventory in an organization can be kept to a single variety of gates.

If the expression is available in the POS form then it is better to realize it using NOR
gates. Consider the expression for STRT in the POS form as given below.

 STRT = (PTRL+IGNI+NEUTR+KICK).(PTRL+IGNI+SLOP+NEUTR+LOCK)

Realization using the commercially available NOR gates is shown in the figure 6.

U1
STRT

U4

U4

U1
U1

U3

U3

U2

U2

U2

U2 U1
PTRL

IGNI

NEUTR

KICK

SLOP

LOCK

FIG.3.6: NOR realization of a logical expression in POS form

We observe that the number of gating levels had to be increased as NOR gates with
larger number of inputs are not available. Besides, logical expressions are more
commonly expressed in SOP form than in POS form. Hence implementation of
expressions through NOR gates is not particularly popular.

Some logical expressions are more conveniently expressed in terms of EX-OR
operations rather than in the standard form. For example the expression for parity
checking is given by.

EP = A ⊕ B ⊕ C ⊕ D ⊕E

This is more conveniently realized in this form rather than realizing it in its canonical
version. The logical expression for the parity checking, in its canonical form is

 EP = A B C D E + A B C' D' E + A B C'D E' + A B C D' E' +

 A' B' C' D' E + A' B' C' D E' + A' B' C D' E' + A' B' C D E +

 A B' C' D' E' + A B' C D E' + A B' C D' E + A B' C' D E +

 A' B C' D' E' + A' B C D E' + A' B C D' E.+ A' B C' D E.

Its implementation using 74LS86/HC86s (Quad 2-input EX-OR) is shown in the figure
7. Notice that while this realization appears simple, the number of levels of gating is
considerably more. This would mean more delay to generate the output variable.

A

B

C
D
E

EP

 FIG. 7: Realization with EX-OR gates

At this stage of design, the choice of gates in realizing logical expressions should be
based on the following factors:

 Number of chips needed to realize the expression

 Number of varieties of chips to be kept in the inventory

 Number of levels of gating (the maximum number of gates that an input
signal has to pass through in a circuit)

Each expression may lead to the usage of a unique combination of gates in
minimizing the chip count. In such a case one has to keep all the available gates in
the inventory. However, if one wishes to minimize the inventory it is more
convenient to limit the realization of logical expressions to NANDs and INVERTERs.
This is particularly advantageous as the expressions are more commonly available in
the SOP form. The number of levels of gating depends on the number of variables,
the form in which the variables are available and the fan-in of the available gates,
which in turn determines the delay in generating the output.

DELAY

Any hardware logic unit will have some propagation delay associated with it. The
output appears with a time delay after the application of inputs. The time
relationship between the input and output of an INVERTER is shown in the figure 1.
Two different time delays are identified in the figure,

 tPHL represents the propagation delay when the output makes a transition
from high voltage to low voltage,

 tPLH indicates the propagation delay associated when the output makes a
transition from low voltage to high voltage.

These two propagation delays are not necessarily the same. When they are not the
same they should be considered independently, and no averaging should be done.

The IC manufacturers mention typical and maximum values in their specification
sheets. For example the propagation delays of 74LS04 are:

 TYP MAX

 tPHL - 9.5 15 ns

 tPLH - 9.5 15 ns

A /A

VT

/A

A

PLHt

t PHL

VT

FIG.1: Input-output timing relationship in an INVERTER

The typical values of these propagation delays are used by the manufacturers to
indicate the speed of the circuits. Possibly most of the ICs in a given lot will actually
have delays equal to or even less than these typical values. But the typical value is
not a guaranteed value and hence cannot be used as a design parameter. You have
to always work with the worst case values for these propagation delays, which
happen to be the maximum values in this case.

It should also be noted that the manufacturers of LSTTL family ICs do not guarantee
any minimum delay. This can create problems in certain types of circuits. Consider
the digital differentiator shown in the figure 2.

/XA B

A

B

X

FIG.2: Digital differentiator

The timing diagram shows that the output is a pulse of width T. What will be the
width of the output pulse?

 If we take typical values for the associated gates it would be 9.5 x 3 = 28.5
ns.

 If we consider maximum values the width would be 15 x 3 = 45 ns.

 While we may agree it would be some nonzero value we cannot guarantee
any minimum value to this pulse. It can be any value from almost 0 to 45 ns.

If we want to generate a pulse with a guaranteed width of 30 ns, this circuit cannot
be used. Therefore, you will have to be careful in applications similar to this in
assuring the performance of the circuit.

Propagation delay is an important parameter in a digital circuit, as it is indicative of
the speed with which the given task would be done. One of the aims of digital
systems is to do more and more in less and less time. Therefore, in applications
where speed is an important criterion, you will have to keep a close watch on the
propagation delays and make attempts to reduce them as much as possible.

When a logical expression is given in a SOP either in canonical or non-canonical form
and the variables are available in their Asserted High and Asserted Low versions, it
can be realised by two level NAND gating, if the number of inputs do not exceed 13
(74S134).

If the variables are available only in one form then the expression in its canonical
form can be realized through three levels of gates.

If the expression is to be realised in any other form the delay is likely to be more.
Consider the expression for STRT as given below:

 STRT = PTRL. IGNI. ([NEUTR.KICK] + [SLOPE.NEUTR/.KICK/])

Obviously, this expression is not in its canonical form. Its realisation is shown in the
figure 3. The propagation delay of this realisation is equal to that of five stages.

NEUTR

SLOPE

NEUTR
PETR
IGNI

STRT

KICK

KICK

FIG. 3: Realisation of the logic expression for START in its non-canonical form

You should note that the minimization of propagation delay may not always the
design objective. In such cases you may use other forms of the logical expression if
they do not increase the chip count. The form of the expression may be chosen to
make the design more easily understandable.

Let us consider some hardware aspects of propagation delay. The value given for tPHL
and tPLH are not the guaranteed maximums under all operating conditions. Normally
the delays for LSTTL family are defined at the following operating conditions:

 T = 25o C, V = 5 volts, C = 15 pF, and R = 2 K Ω

For HCMOS family the delay times are defined at many operating conditions, as
these devices can be operated at voltage levels below 6 volts. The dc and ac
characteristics including the time delays are specified at nine operating points (three
voltages and three temperatures)

1. ∆VCC = 2.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF, Input tr =
tf = 6 ns

2. ∆VCC = 4.5 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF, Input tr =
tf = 6 ns

3. ∆VCC =6.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF, Input tr =
tf = 6 ns

As HCTMOS family is compatible with LSTTL family the AC electrical characteristics
are defined only at one voltage, namely, at VCC = 5 V in the following manner.

 VCC = 5.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF,
 Input tr = tf = 6 ns.

The test circuit with which these delays are measured is given in the figure 4. The
propagation delays change with temperature, load capacitance and type of load
circuit. The circuit shown in the figure 4 simulates the input of a LSTTL and HCMOS
gates.

VccVcc

Vout

D

DUT

FIG. 4: Test circuits for LSTTL ICs with totem-pole outputs and for HCMOS ICs

Other types of load circuits, we are likely to encounter, are shown in the figure 5.

R

V V

R

RC T E

LL

C T

CCCC

FIG. 5: Load circuits encountered in digital systems

The load capacitance will, in turn, depend on the PCB track width and the length, and
on the material of the laminate. The capacitance encountered in actual practice can
vary from 20 pF to 150 pF. The effect of this capacitance is to increase the
propagation delay and supply current spike amplitude during the transients.
Depending on the load circuit, capacitive loading and temperature the propagation
delays can increase by as much as 15 ns. The nature of dependence of the
propagation delay on the load capacitance is shown in the figure 6.

 .
2 0 6 0 10 0 1 40 18 0 p F

1 0

2 0

3 0

C Load Capacitance
T

∆

 t

t P H L

P L H (25o

(25 C)
o

D
el

ta
 T

ur
n

on
 d

el
ay

 (n
se

c)

 ∆ C)

FIG. 6: Dependence of turn-on delay on the load capacitance

The designer is required to pay special attention to the PCB layout to minimize the
capacitive loading, the designer is advised to consult the performance curves
published by the manufacturer when the circuits are to be designed at high/low
temperatures and/or under high capacitive load conditions.

HAZARDS

The analysis and minimisation methods presented so far predict the behaviour of

combinational circuits under steady state. This means that the output of the circuit is

considered only after all the transients that are likely to be produced when the state

of the inputs signals change. However, the finite delays associated with gates makes

the transient response of a logic circuit different from steady state behaviour. These

transients occur because different paths that exist from input to output may have

different propagation delays. Because of these differences in the propagation delays

combinational circuits, as we will demonstrate, can produce short pulses, known as

glitches, under certain conditions, though the steady state analysis does not predict

this behaviour. A hazard is said to exist when a circuit has the possibility of

generating a glitch. However, the actual occurrence of the glitch and its pulse width

depend on the exact delays associated with the actual devices used in the circuit.

Since the designer has no control over this parameter it is necessary for him to

design the circuit in a manner that avoids the occurrence of glitches. While a given

circuit can be analysed for the presence of glitches, it is necessary to design the

system in a manner that hazard analysis of the circuit would not be necessary. One

simple method is not to look at the outputs until they settle down to their final value.

Consider the realization of logical expression X = A B' + BC'D' as shown in the figure

3.14. In this circuit the hazard is caused by the propagation delay associated with

the gate-1. Let A and B be Asserted and C and D are Not-asserrted. When B changes

from its Asserted state to its Not-asserted state with the other variables remaining

the same the output should remain in its Asserted state. However, when B changes

from 1-to-0 the output of the gate-5 changes from 1-to-0. The output of the gate-4

should change from 0-to-1 at the same time. But the delay associated with the

gate- 1 makes this transition of the gate-4 output to happen a little later than that of

gate-5. This can cause brief transition of X from 1-to-0 and then from 0-to-1, as

shown in the figure 1.

A

B

B

C

D

X

1

2

3

4

5

6

FIG. 1: Relaisation of the expression X = AB/ + BC/D/

A hazard of this nature is known as static-1 hazard, because the circuit is likely

produce a 0-glitch when the output is expected to remain in state 1 as per the

steady state analysis. Similarly, if the circuit is likely to produce a 1-glitch when the

output is expected to remain in state 0 as per the steady state analysis it is known

as static-0 hazard. When the output is supposed to change from 0 to 1 (or 1 to 0),

the circuit may go through three or more transients to produce more than one glitch.

Such multiple glitch situations are known as dynamic hazards. The static and

dynamic hazards are illustrated in the figure 2. Obviously these hazards are

undesirable when these outputs happen to be critical in a given digital system.

FIG. 2: Different types of static and dynamic hazards

The K-Map of the expression given above is shown in the figure 3.

1 1 1

1

1

1

A

B

C

D

1 1 1

1

1

1

A

B

C

D

AC'
BC'D'

AB'

FIG. 3: K-maps of the logic expression X = AB' + BC'D'

It is clear from the K-Map that the hazard associated with the 1-to-1 transition

occurred when the change of state of the variable B caused the transition from one

grouping BC'D' to another grouping AB'. This jump made it necessary for the signal B

to go through another path of longer delay to keep the output at the same state.

While the K-Map makes it easy to identify the hazard associated with 1-to-1

transition it is much more difficult to detect the other three transitions. Fortunately

one result from Logic and Switching Theory comes to our rescue. The theorem for

the hazard free design states that a two level gate implementation of a logical

expression will be hazard free for all transitions of the output if it is free from the

hazard associated with 1-to-1 transition. This theorem makes it very easy to detect

and correct for the hazards in a combinational circuit, since the 1-to-1 transition can

easily be detected through K-Map. When the input variables change in such manner

as to cause a transition from one grouping to another grouping, the 1-to-1 transition

can occur. Therefore, the procedure to eliminate hazards in two level gating

realization of a logical expression is to include all 1s which are unit distance apart at

least in one grouping. In the example considered above the hazard occurred

because when B changed its state, it caused a transition from BC'D' grouping to A B'

grouping. Therefore the solution to remove hazard is to group the terms ABC'D' and

AB'C'D' together. This would lead to an additional gate. This procedure is illustrated

in the figure 4. The added gate defines the output during the transition of B from

one state to the other. This procedure can be applied to all two level gate situations

to eliminate hazards.

A

B

C

D

X

FIG.4: Hazard free realisation of the expression

X = AB' + BC'D' as X = AB' + BC'D' + AC'D'

LOADING

A logic gate has limited capacity to source and sink current at its output. As the

output of a gate is likely to be connected to more than one similar gate, the designer

has to ensure that the driving unit has the necessary current capability. The loading

in the case of digital circuits, built with TTL integrated circuits, is defined in terms of

Unit Loads (UL). One UL is defined as that of the input of Std.TTL gate. This is given

by,

IIL : Input LOW Current (The current flowing out of an input when a

 specified LOW level voltage is applied to that input)

 = -1.6 mA (with VCC at Maximum and VI = 0.4 volts)

 IIH : Input HIGH Current (The current flowing into an input when a specified

 HIGH level voltage is applied to that input)

 = 40µA (with VCC at Maximum and VI = 2.4 volts)

A Std. TTL gate has a fanout of 10 ULs. This is equivalent to,

IOL : Output LOW Current (The current flowing into an output which is in the

 LOW state)

 = 16 mA (with VCC and VIH at Minimum and VOL = 0.4 volts)

 IOH - Output HIGH Current (The current flowing out of an output which is in

 HIGH state)

 = - 400 µA(with VCC at Minimum, VIL at Maximum and VOH = 2.4 volts)

The output current capability of LSTTL gate is

 IOH = - 400 µA at VOH = 2.7 volts

 IOL = 4 mA at VOL = 0.4 volts

 = 8 mA at VOL = 0.5 volts

If the LOW state output VOL is to be maintained at 0.4 volts LSTTL gates have 2.5 UL

capability, and if VOL can be tolerated at 0.5 volts it can support 5 ULs. However, it is

unlikely that we need to drive Std.TTL gates. The LSTTL gate has the input

characteristics as given below:

 IIH = 20 µA at VI = 2.7 volts

 IIL = -0.4 mA at VI = 2.7 volts

Therefore, an LSTTL gate can drive 10 LSTTL gates with VOL of 0.4 volts and 20

LSTTL gates with a VOL of 0.5 volts. The loading on an LSTTL gate, that is, the

number of other LSTTL gates that can be connected to it, should be kept within these

limits. If these limits are exceeded, initially the logic voltage levels deteriorate from

the specified values, and subsequently the gate would be damaged due to the

excessive power consumption.

The input and output current specifications of a HCMOS gate are given by;

 Iin = + 0.1 µA at VCC = 6.0 V at T: 25o C to -55oC,

 = + 1.0 µA at VCC = 6.0 V at T: < 85o C

 = + 1.0 µA at VCC = 6.0 V at T: < 125o C

 IOH = - 4.0 mA at VOH = 3.98 V with VCC = 4.5 V and T: -55o to 25o C

 at VOH = 3.84 V with VCC = 4.5 V and T: < 85oC

 at VOH = 3.70 V with VCC = 4.5 V and T: < 125oC

 = - 5.2 mA at VOH = 5.48 V with VCC = 6.0 V and T: -55o to 25o C

 at VOH = 5.34 V with VCC = 6.0 V and T: < 85oC

 at VOH = 5.20 V with VCC = 6.0 V and T: < 125o C

 IOL = 4.0 mA at VOL = 0.26 V with VCC = 4.5 V and T: 25o to -55o C,

 at VOL = 0.33 V with VCC = 4.5 V and T: < 85oC

 at VOL = 0.40 V with VCC = 4.5 V and T: < 125oC

 = 5.2 mA at VOL = 0.26 V with VCC = 6.0 V and T: 25o to -55o C

 at VOL = 0.33 V with VCC = 6.0 V and T: < 85oC

 at VOL = 0.40 V with VCC = 6.0 V and T: < 125oC

As it can be seen the designer has to consider a wide range of operating conditions

to take loading effects into consideration when working with HCMOS family circuits.

For the HCTMOS family ICs the currents specified at VCC = 4.5 V need only to be

considered.

There may arise certain occasions, like a clock source driving many units and setting

up LOW(L) and HIGH (H) voltage levels to be connected to unused inputs, wherein it

may become necessary to provide more drive capability than the standard values. In

such cases buffers have to be used. The available buffers in LSTTL family are;

 Quad 2 - input NAND Buffer - 74LS37

 Dual 4 - input NAND Buffer - 74LS40

These have an output current capability of

 IOL = 24 mA

 IOH = - 1200µA

They have the capacity to drive as many as 60 LSTTL loads. There is a small price to

be paid in terms of increased propagation delay (tPHL = tPLH = 24 n secs against the

usual 15 n secs) for this enhanced drive capability. This increased time delay should

not normally make any difference as these buffers are unlikely to be used for

implementing logic expressions. There are no similar buffers available in the HCMOS

and HCTMOS families. When we are required to drive a load even beyond the

capability of a buffer, discrete components have to be used.

LARGER OUTPUT VOLTAGE SWING

The worst case output voltage level of a gate when it is in HIGH state can be as low

as 2.7 volts in the case of LSTTL family and only 2.4 volts in the case of Std. TTL

family. In the case of HCMOS family the output voltage levels can go up to 5.5V if

6.0V power supply is used. If it is desired to have a higher output voltage swing one

simple way is to connect a 1 KΩ or a 2 KΩ resistor from VCC to the output terminal.

However, it should be remembered that this modification of the output circuit would

increase the propagation delay. Larger output voltage swings can be obtained with

the help of open-collector gates. In the open-collector (OC) gates the active pull-up

circuit of the output totem-pole configuration in the LSTTL circuit is deleted as shown

in the figure 1.

A

B

vcc

FIG. 1: 2-input LSTTL NAND gate with open collector output

The designer can now have the choice of returning the open collector terminal to the

desired supply voltage, as long as its value is less than or equal to the VOH(max)

specified, through a suitable load resistor.

The available open collector LSTTL gates are:

Quad 2-input NAND(OC) gate - 74LS03 [VOH (max) = 5.5 V, IOL = 8 mA]

Quad 2-input NAND(OC) gate - 74LS26 [VOH (max) = 15 V, IOL = 18 mA]

Hex Inverter (OC) - 74LS38 [VOH (max) = 5.5 V, IOL = 24 mA]

Hex Inverter/Buffer (OC) - 7406 [VOH (max) = 30 V, IOL = 40 mA]

Hex Buffer (OC) - 7407 [VOH (max)= 30 V, IOL = 40 mA]

The manner in which the load resistor is to be connected is shown in the figure 2. As

the pull-up is through a passive resistor the propagation delay will be higher than

that of the gate with the totem-pole output. For example 74LS26 operated at VCC of

5 V, RL = 2 KΩ and CL = 15 pF has tPLH = 32 ns (max) and a tPHL = 28 ns (max)

against tPHL = tPLH = 15 ns (max) in the case of 74LS00 under the same operating

conditions. Open collector gates are useful for interfacing ICs from different logic

families, and ICs with discrete circuits operating with different supply voltages.

A

B

vcc vC

 FIG. 2: Connecting a load resistor to an OC gate

The HCMOS and HCTMOS families do not offer many open drain circuits. Whenever

larger voltage swings are needed it is possible to use CD4000 series circuits. The

only open drain gate that is available in the HCMOS family is 74HC03, which is quad

2-input NAND gate. The major application of open-collector gates is in implementing

wired-logic operation needed in bussing signal lines.

WIRED-LOGIC OPERATIONS

If the outputs of the gates can be tied together as shown in the figure 1 it would be

possible to realise AND operation without the actual use of hardware.

A

B

C
D

AB

CD

X=ABCD

 FIG.1: Wired AND operation

Such connections are referred to as wired-AND and implied-AND. This is because the

voltage at the interconnecting point is High only if the outputs of both the gates are

High at the same time. Such wired-logic connections are very useful in bussing

signals in large digital systems wherein the hardware has to be implemented on a

number of printed circuit boards. Consider the situation shown in the figure 2.

BOARD A BOARD B BOARD C BOARD N

FIG.2: Common signal line in Bus organised digital system

Board A has to take some action after verifying the change of state in all the other

boards. Though this operation can be performed through using combinational

circuits, it is more conveniently performed through wired-AND interconnection of the

outputs from all the boards and connecting this wired-AND signal to be input line of

board-A. This would substantially reduce the amount of hardware to be used.

Let us explore the possibility of implementing such wired-logic connections with

LSTTL combinational ICs. The actual circuit that would result when we connect the

outputs of two LSTTL gates with totem-pole output configurations is shown in the

figure 3. It can be seen from the circuit diagram that if one of the outputs is in Low

state while the other one is in High state there will occur a low impedance path

between the supply and ground leading to a large value of current. This can lead to

the destruction of the components in the output circuits of the ICs. Therefore, it is

not possible to short the outputs of two or more LSTTL gates to realize wired-logic

operations. However, wired logic operations can be implemented with the help of

open-collector gates.

HL

VccVcc

FIG.3: Outputs of two LSTTL gates tied together

When the outputs of the open collector gates are tied together it becomes necessary

to connect a load resistance R from the output point to the supply. The value of this

load resistance should be carefully chosen to maintain the logic state within the TTL

limits under worst operating conditions. The most general interconnection situation

that can occur is shown in the figure 4.

OC

OC

OC

OC

H

H

H

H

RL

I IH

I IH

I IH

I OH

I OH

I OH

I OH

V CC

FIG.4: Connection of OC gates in parallel with all the outputs in the High state

It may be noted that when two OC gates are interconnected to perform wired-AND

operation they are capable of driving one to nine Unit Loads, and when an OC gate is

not paralleled with other gates then it can drive up to ten Unit Loads. The maximum

value of the load resistance R must be selected to ensure that sufficient load current

(to drive the output gates) output is High. Using the worst case values for the High

and Low states for designing the load resistor RL, will give a guaranteed dc noise

margin of 700 mV in the logic High state. Since 2.7 V should be present no more

than 2.3V can be dropped acrossRL. The current through R is composite of current

into the loads, m .IIH, and leakage current into output transistors which are biased

into off state, n.IOH . Both IOH and IIHare data sheet specifications; they are 250 µA

and 20 µA respectively in the case of 74LS38. The maximum value of the load

resistor is calculated from the relationship given below:

 RL(max) =

VCC − VOH(required)

n.IOH + m.IIH

with n = 4, m = 3 and VCC = 5 V and VOH (required) = 2.7 V the maximum value of

RLis 2170 ohms. A greater value will result in the deterioration of the High state

voltage value. The minimum value of RL is found by considering Low state at the

output of the paralleled gates as shown in the figure 5. RL is permitted to drop a

maximum voltage dictated by the noise margin in the Low state, which is 400 mV. In

the circuit shown in the figure 5, wherein the worst case situation is indicated, the

output of one gate is in Low state while the outputs of the remaining gates are in

High state. The resistor must be able to maintain the Low level while sinking the

load current from all the gates connected as load.

The minimum value of the load resistor RL may now be calculated from the

relationship given as below:

 RL(min)=

VCC − VOL(required)

IOL(capability) − Isink(load)

OC

OC

OC

OC

H

L

H

H

RL

V CC

 FIG. 5: OC gates connected for wired-AND operation with their
 outputs in Low state

With IOL = 24 mA and IIL = 0.4 mA the minimum value of RL is 201 ohms. The value

of the load resistor may be chosen between RL(max) and RL (min). It is essential to

note that the output impedance of the OC gates will be significantly higher in the

High state due to the pull-up resistor in comparison to that of the gate with the

totem-pole output. This also results in a slightly higher propagation delay.

 1

TRISTATE GATES
Wired-logic operations are important in the design of bus-structured digital systems. The

open-collector gates can meet the requirements of bussing, but have limitations with regard to

the speed and the distance between the modules, and every signal line requires the usage of a

suitable load resistor. These factors limit the operation of OC based bus structured systems to

about 2 MHz operation over a distance of a few meters. Tristate logic elements provide a

solution to the problems of speed and power in bus organized digital systems. Tristate gates

are essentially gates with output stages that assume three states. Two of these three are

normal low impedance High and Low states. The third one is a high-impedance (Hi-z) state.

When the device is in Hi-z state both the transistors in the output totem-pole circuit are in off

conditions. When the output of such a gate in Hi-z state is tied to the output of a gate that is

in Lo-z state, the High-z state gate does not influence (in any significant manner) the output

circuit of a Lo-z state gate. This enables us to tie the outputs of many tristate devices, and

share a common (bus) signal line. These units have the speed of the regular devices, higher

line-drive capability and higher noise immunity. By eliminating the pull-up resistors these

tristate gates cut bus delays to a few nanoseconds. The available TSL buffers are listed in the

following:

 LSTTL HCMOS HCTMOS

Quad 3-state noninverting buffer 74LS125A 74HC125A

Quad 3-state noninverting buffer 74LS126A 74HC125A

Octal 3-state inverting buffer/ line driver/line
receiver

74LS240 74HC240A 74HCT240A

Octal 3-state Noninverting buffer/ line driver/line
receiver

74LS241 74HC241 74HCT241A

Octal 3-state inverting bus transceiver 74LS242 74HC242

Octal 3-state noninverting buffer/ line driver/line
receiver

74LS244 74HC244A 74HCT244A

Octal 3-state noninverting bus transceiver 74LS245 74HC245A 74HCT245

Hex 3-state noninverting buffer with common
enables

74LS365A 74HC365

Hex 3-state inverting buffer with common enables 74LS366A 74HC366

Hex 3-state noninverting buffer with 2-bit and 4-bit
sections

74LS367A 74HC367

Hex 3-state inverting buffer with 2-bit and 4-bit
sections

74LS368A 74HC368

Octal 3-state inverting buffer/ line driver/line
receiver

74LS540 74HC540 74HCT540

Octal 3-state noninverting buffer/ line driver/line
receiver

74LS541 74HC541 74HCT541

Octal 3-state inverting bus transceiver 74LS640 74HC640A 74HCT640

2

When the output of an LSTTL tristate gate is in Hi-z state the maximum leakage current at the

output, which occurs when it is tied to a gate whose output is low-impedance High state, is

+20 µA (into the output terminal). When the device is placed in its low impedance state it has

all the desirable properties of the usual LSTTL gate. Another important factor in driving a bus

line is the current capability in sinking and sourcing. For this reason the output stage of a

tristate gate is designed to source 2.6 mA at a VOH of 2.7 V, and sink 24 mA at VOL of 0.5 V

and 12 mA at a VOL of 0.4 V. This is 6.5 times more sourcing capability than a LSTTL gate.

This will permit as many as 128 tristate logic (TSL) outputs to be tied to a common bus and

still provide enough sourcing current to drive three LSTTL loads. If one device is ON and 127

are OFF the following is valid:

 127 x 20µA = 2.54 mA
 2.6 mA - 2.54 mA = 60µA
 = 3 x 20 µA (LSTTL)

The device that is ON, therefore, is capable of maintaining LSTTL speeds while driving the bus.

Another advantage of the high current sourcing feature is that the LSTTL gate with 400 µA

maximum sourcing capability can only drive about 25 to 35 cms of line before the noise

problems become prohibitive. The TSL output will be able to drive reliably a line over 3 meters

long. The greater sourcing capability also provides a far superior High level noise immunity

that is better than the usual LSTTL devices. TSL gates are designed in such a way that the

delay from Inhibit to Output Disable, 20 ns(max), is less than the delay from Enable to Low

State, 25 ns(max). Therefore, the device that is disabled off the line is removed before the

device that is being enabled into Low state is brought on to the bus. This prevents the

occurrence of heavy currents during the transients from Hi-Z state to Low-Z state and vice-

versa. In addition the output state is designed to take care of shorted conditions between two

TSL gates. Even if two devices are simultaneously switched on, the pull down transistors are

designed to withstand as much as 40 mA. But long before it reaches that limit the transistors

begin to come out of saturation.

At present many of the combinational and sequential MSI circuits are available commercially

with tristate outputs. This option makes the usage of these ICs very convenient.

Digital Electronics
Module 4: Combinational Circuits:

Multiplexers

N.J. Rao
Indian Institute of Science

id1993476 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M4L3 2

Multiplexers

� A multiplexer is a combinational circuit that gates one out
of its several inputs to a single output.

� It is also called a �data selector�.
� The input selected for connection to the output is

controlled by a set of SELECT inputs.

December 2006 N.J.Rao M4L3 3

4-Input Multiplexer

MUX

0

1

0

1

2

3

S0

S1

DI0

DI1

DI2

DI3

G
0_
3

Y

SELECT
INPUTS

DATA
INPUTS

December 2006 N.J.Rao M4L3 4

Functioning of the Multiplexer

� S0 and S1 are select inputs.
� Together S0 and S1 determine the input, among the

Data Inputs, DI0, DI1, DI2, and DI3, that gets connected
to the output Y.

The output of the multiplexer is given by:
Y = DI0.S1/.S0/ + DI1.S1/.S0 + DI2. S1.S0/ +

DI3.S1.S0
� The relationship between the SELECT inputs and the

DATA inputs is G dependency.

December 2006 N.J.Rao M4L3 5

Parameters of concern

The main parameters of concern to us are:
� Number of inputs
� Nature of outputs
� Propagation delay

December 2006 N.J.Rao M4L3 6

Available LSTTL multiplexers

LSTTL FAST HCMOS HCTMOS

54/74LS 54/74F 54/74HC 54/74HCT
Quad 2-input multiplexers
2-state noninverting outputs 157 157A 157 157A
2-state inverting outputs 158 158A
3-state noninverting outputs 257B 257A 257
3-state noninverting outputs 258B 258A

December 2006 N.J.Rao M4L3 7

Available LSTTL multiplexers

LSTTL FAST HCMOS HCTMOS
54/74LS 54/74F 54/74HC 54/74HCT

Dual 4-input Multiplexer
2-state noninverting outputs 153 153 153
2-state inverting outputs 352 352
3-state noninverting outputs 253 253 253
3-state inverting outputs 353 353
8-input Multiplexer
2-state noninverting outputs 151 151 151
3-state noninverting outputs 251 251 251
16-input Multiplexer
2-state noninverting outputs 150

December 2006 N.J.Rao M4L3 8

Multiplexer ICs can be used for

� selection of data from multiple sources
� realising logic expressions

December 2006 N.J.Rao M4L3 9

Data Selection

Selecting 8-bit data
from four sources

December 2006 N.J.Rao M4L3 10

Data Selector

EN

0
1

2

1

2

3

4

5

6

7

0

G 0
7

MUX EN

0
1

2

1

2

3

4

5

6

7

0

G 0
7

MUX

EN

0
1

2

1

2

3

4

5

6

7

0

G 0
7

MUXEN

0
1

2

1

2

3

4

5

6

7

0

G 0
7

MUX

ch9

ch10
ch11

ch12

ch13

ch14
ch15

ch16

ch25
ch26

ch27

ch28

ch29

ch30

ch31

ch32

s3

s4

ch17
ch18

ch19

ch20

ch21
ch22

ch23

ch24

ch1

ch2

ch3

ch4
ch5

ch6
ch7
ch8

s3

s4

s0
s1

s2

s3

s4

1-of-32 data selector

December 2006 N.J.Rao M4L3 11

Multiplexers for Logic Realization

Consider the function Y
Y = A/B/C/ + A/BC + AB/C + ABC/

Y = m0 (IP0) + m1 (IP1) + - - - - m2n (IP2n)
Y = m0 + m3 + m5 + m6
Y = m0(IP0=1) + m1(IP1=0) + m2(IP2=0) +

m3(IP3=1) + m4(IP4=0) + m5(IP5=1) +
m6(IP6=1) + m7(IP7=0).

December 2006 N.J.Rao M4L3 12

Realization of Y

EN

0
1
2

1
2
3
4
5

6
7

0

G 0
7

MUX

C
B
A

L

H

Y

December 2006 N.J.Rao M4L3 13

Example

Y =  (1, 2, 4, 7, 8, 9, 13)

X401111011

X400111001

X4 /11010001

X411011110

X4 /01010010

X4 /10010100

X400011000

YX3X2X1YX4X3X2X1

Y = X4 (0, 3, 4, 6) + X4 / (1, 2, 4)

= X4 (0, 3, 6) + X4 / (1, 2) + (1) 4

December 2006 N.J.Rao M4L3 14

Example

EN

0
1
2

1
2
3
4
5

6
7

0

G 0
7

MUX

Y

X4

X3
X2
X1

L

H

December 2006 N.J.Rao M4L3 15

Some variables are Asserted Low

EN

0

1

2

1

2

3

4

5

6

7

0

G
0

7

MUX

Y

X3

X2'

X1'

X4

H

L

X1 and X2 are asserted low

MULTIPLEXERS

A multiplexer is a combinational circuit that gates one out of its several inputs to a

single output. As it selects one out of many inputs, it is also called a “data selector”.

The input selected for connection to the output is controlled by a set of SELECT

inputs. A typical 4-input multiplexer is illustrated in the figure 1.

MUX
0
1

0
1
2
3

S0
S1

DI0
DI1
DI2

DI3

G
0_
3

Y

SELECT
INPUTS

DATA
INPUTS

FIG. 1: Schematic of a 4-input multiplexer

S0 and S1 are select inputs. Together S0 and S1 determine the input, among the

Data Inputs, DI0, DI1, DI2, and DI3, that gets connected to the output Y.

The output of the multiplexer is given by:

 Y = DI0.S1/.S0/ + DI1.S1/.S0 + DI2. S1.S0/ + DI3.S1.S0

Notice that the relationship between the SELECT inputs and the DATA inputs is G

dependency.

The main parameters of concern to us are:

 Number of inputs

 Nature of outputs

 Propagation delay

The choice on the number of inputs enables us to select the appropriate multiplexer,

to minimize the number of ICs needed to implement a given logic function.

For example, if data is to be selected from two 16-bit sources, it is more convenient

to use 2-input multiplexers, than 4-input or 8-input multiplexers.

Some additional features:

 Higher drive capability of a multiplexer enables the designer to save on

buffers and the consequent delay in certain situations.

 Availability of complementary outputs often results in the saving of additional

inverters.

 Availability of tristate outputs make it easy to tie the outputs of a number of

multiplexers without using additional gates.

There are two propagation delays that are of interest to designers:

 - Delay from the data inputs to the output

 - Delay from the select input to the output

These timing relationships are shown in figure 2.

t PLH

t

PLHt

tPHL

PHLtoutput

select

data

FIG. 2: Timing relationship between signals of a multiplexer

Some of the commonly available multiplexers as MSIs in the LSTTL family are:

 LSTTL FAST HCMOS HCTMOS
 54/74LS 54/74F 54/74HC 54/74HCT
Quad 2-input multiplexers

 2-state noninverting outputs 157 157A 157 157A

 2-state inverting outputs 158 158A

 3-state noninverting outputs 257B 257A 257

 3-state noninverting outputs 258B 258A

 Dual 4-input Multiplexer

 2-state noninverting outputs 153 153 153

 2-state inverting outputs 352 352

 3-state noninverting outputs 253 253 253

 3-state inverting outputs 353 353

8-input Multiplexer

 2-state noninverting outputs 151 151 151

 3-state noninverting outputs 251 251 251

16-input Multiplexer

 2-state noninverting outputs 150

As can be seen from the ICs listed above, there are available, a variety of

combinations of parameters in the case of 2-input multiplexers, while in the other

cases, the main choice is between the normal output and 3-state outputs.

Multiplexer ICs can be used for

 selection of data from multiple sources

 realising logic expressions

These two aspects are explored in this Unit

Data Selection

The multiplexer was mainly designed for selecting data from several sources. For

example, if we are required to select an 8-bit data from one of four possible sources,

then, it can be realised through four dual 4-input multiplexers, like 74LS153. The

circuit that realises such a data selection is shown in figure 3

EN

0
1
2

1
2
3
4
5
6
7

0

G 0
7

MUX

C
B
A

L

H

Y

FIG.3: Circuit for selecting 8-bit data from four sources

Another conventional use of the multiplexers is one of time-division gating of several

data lines on to a transmission channel using SELECT lines. This is done by using a

`Multiplexer' as the sending unit, and a `Demultiplexer' as a receiving unit. The

sending end of such a transmission system which multiplexes 32 data lines is shown

in Figure 4.

FIG. 4: 1-of-32 data selector

Multiplexers for Logic Realization

The multiplexer also finds application in realising logical functions, sometimes in a

more effective manner than with the gates. Consider the following example.

Example 1: Consider the function Y

 Y = A/B/C/ + A/BC + AB/C + ABC/

The general expression that gives the input-output relationship of a multiplexer is

 Y = m0 (IP0) + m1 (IP1) + - - - - m2
n (IP2n)

This expression for Y can be written in terms of MINTERMS as:

 Y = m0 + m3 + m5 + m6

EN
0
1

2

1
2
3
4
5

6
7

0

G 0
7

MUX EN

0
1

2

1
2
3
4
5

6
7

0

G 0
7

MUX

EN

0
1
2

1
2
3
4
5

6
7

0

G 0
7

MUXEN

0
1
2

1
2
3
4
5

6
7

0

G 0
7

MUX

ch9
ch10
ch11
ch12
ch13
ch14
ch15
ch16

ch25
ch26

ch27
ch28
ch29
ch30
ch31
ch32

s3

s4

ch17
ch18

ch19
ch20
ch21
ch22
ch23

ch24

ch1
ch2
ch3
ch4
ch5
ch6
ch7
ch8

s3

s4

s0
s1
s2

s3
s4

This expression can in turn be rewritten as:

 Y = m0(IP0=1) + m1(IP1=0) + m2(IP2=0) + m3(IP3=1) + m4(IP4=0) +

 m5(IP5=1) + m6(IP6=1) + m7(IP7=0).

Connect the logic variables A, B, and C to the Select Inputs and binary inputs to the

Data lines of an 8-input multiplexer as indicated in the figure 5. This is a very

general method and it allows any expression of n-logic variables to be realized by a

2n -input multiplexer.

EN

0
1
2

1
2
3
4
5
6
7

0

G 0
7

MUX

C
B
A

L

H

Y

FIG. 5: Realisation of the function given in example 1

Example 2: Implement the logic expression given below, using 74LS251 (8-input

multiplexer)

 Y = Σ (1, 2, 4, 7, 8, 9, 13).

X1 X2 X3 X4 Y X1 X2 X3 Y
0 0 0 1 1 0 0 0 X4
0 0 1 0 1 0 0 1 X4 /
0 1 0 0 1 0 1 0 X4 /
0 1 1 1 1 0 1 1 X4
1 0 0 0 1 0 1 1 X4 /
1 0 0 1 1 1 0 0 X4
1 1 0 1 1 1 1 0 X4

Let X1, X2, X3 and X4 be the four variables of which X1 is the most significant and

X4 is the least significant variable. All variables are considered Asserted High.

Consider the truth table given in the following. A 4-input function can be reduced to

a 3-input function by expressing the output Y in terms of X4.

 Y = X4 (0, 3, 4, 6) + X4 / (1, 2, 4)

 = X4 (0, 3, 6) + X4 / (1, 2) + (1) 4

The realisation of the above expression with a 3-input (8- data input) multiplexer is
shown in the figure 6.

EN

0
1
2

1
2
3
4
5
6
7

0

G 0
7

MUX

Y

X4

X3
X2
X1

L

H

FIG. 6: Realisation of the logical expression in the example 2

What happens when some of the variables are Asserted Low while others are

Asserted High? Multiplexers can still be used advantageously to realise expressions

using variables with mixed assertion levels. One simple method is to change the

assertion levels of all the signals to High level by using inverters. Let X1 and X2

variables in the logic expression given in the example 2 be Asserted Low, while the

variables X3 and X4 be Asserted High. Implementation of this expression using the

inverters along with the multiplexer is shown in Figure 7.

FIG. 7: Realisation of the expression in Example 2 when some of the variables are

Asserted Low

EN

0
1
2

1
2
3
4
5
6
7

0

G 0
7

MUX

Y

X3
X2'

X1'

X4

H

L

Digital Electronics
Module 4: Combinational Circuits:

Demultiplexers

N.J. Rao
Indian Institute of Science

id2152024 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M4L4 2

Demultiplexers

� It is a combinational circuit that asserts one of several
outputs in response to a unique input code.

� It is a unit with n-inputs and m-outputs, where m < 2n.
� An output switches from Not Asserted state to an

Asserted state, when the input code is switched to a
specific one.

� When m = 2n, each one of the outputs can be associated
with a Minterm of n-variables.

� Hence, such a decoder is known as Minterm Recogniser

December 2006 N.J.Rao M4L4 3

3-input demultiplexer

0

1

2

EN

0
1

3

4

5

6

7

2

G0
7
_

DMUX

Each one of the outputs have an AND (G) dependence on one of
the input codes.
Enable input can be used to disable/enable the entire functional
unit.

December 2006 N.J.Rao M4L4 4

LSTTL/HCMOS Demultiplexers

Dual 1-of-4 demultiplexer
2-state AL outputs: 74LS139/

74HC139A
2-state AL outputs and common addressing: 74LS155
AL OC outputs and common addressing: 74LS156
3-state AH outputs: 74LS539
1-of-8 demultiplexer
AL outputs and 3 Enable inputs: 74LS138/

74HC138A
AL outputs, 2 Enable, Address latch with latch enable: 74LS137
1-of-10 demultiplexer (2-state AL outputs): 74LS42
1-of-16 demultiplexer (AL outputs and 2 Enable inputs):74LS154/

74HC154

December 2006 N.J.Rao M4L4 5

Uses of a demultiplexer

� Demultiplexing

� Realisation of logic functions

December 2006 N.J.Rao M4L4 6

Decoding
An 8-channel multiplexer-demultiplexer combination

0

1

2

E N

G
0

7

_

D M U X

0
1
2
3
4
5
6
7

0
1
2

1
2
3
4
5

6
7

0

G 0
7

MUX

Y DATA

SO
S1
S2

CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8

CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8

December 2006 N.J.Rao M4L4 7

1-to-32 demultiplexer
0

1

2

E N

0
1

3
4

5

6

7

2

G 0
7
_

D M U X

&

H

1 3 8

}
O 1

O 2

O 3

O 4

O 5

O 6

O 7

O 8

0

1

2

E N

0
1

3

4

5

6

7

2

G 0
7
_

D M U X

&

H

1 3 8

}
O 9

O 1 0

O 1 1

O 1 2

O 1 3

O 1 4

O 1 5

O 1 6

0

1

2

E N

0
1

3

4

5

6

7

2

G 0
7
_

D M U X

&

H

1 3 8

}
O 1 7
O 1 8

O 1 9

O 2 0

O 2 1

O 2 2

O 2 3

O 2 4

0

1

2

E N

0
1

3

4

5

6

7

2

G 0
7
_

D M U X

&

H

1 3 8

}
O 2 5

O 2 6

O 2 7

O 2 8

O 2 9

O 3 0

O 3 1

O 3 2

E N

0

1 } G_0
3

0
1
2
3

D M U X '1 3 9X 2

X 1

X 5

X 4

X 3

December 2006 N.J.Rao M4L4 8

Delays

74LS138: Propagation delays
Address to output tPLH = 27 ns tPHL= 39 ns (max)
Enable to output tPLH = 26 ns tPHL= 38 ns (max)

74LS139: Propagation delays
Address to output tPLH = 29ns tPHL= 38 ns (max)
Enable to output tPLH = 24 ns tPHL = 32 ns (max)

The worst case delay time from the most significant bits of
the input address to output of is 76 ns

The delay from the data input to output is 70 ns

December 2006 N.J.Rao M4L4 9

Realization of Logic functions

� Demultiplexer is essentially a Minterms generator
� Do the necessary ORing of the required Minterms to

realize the logic expression.
� One demultiplexer which generates all the Minterms, and

a number of OR gates can realize multiple logic
expressions of the same set of variables

December 2006 N.J.Rao M4L4 10

Example 1

Y1 = S (0, 2, 4, 5, 6, 11)
Y2 = S (0, 3, 4, 7, 8)
Y3/ = S (1, 3, 6, 14)
Y4 = S (8, 13, 15)

X0'
X1'
X2'
X3'
X4'
X5'
X6'
X7'
X8'
X9'
X10'
X11'
X12'
X13'
X14'
X15'

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

&

DMUX-154
0
1
2
3

-D
-C
-B
-A

G
0_
7

X0'
X2'
X4'
X5'
X6'
X11'

X0'
X3'
X4'
X7'
X8'

X1'
X3'
X6'
X14'

X8'
X13'
X15'

Y1

Y2

Y3'

Y4

EN

December 2006 N.J.Rao M4L4 11

Example 1 (2)

74LS154: Propagation delays
Address to output tPLH = 36 ns tPHL = 33 ns (max)
Enable to output tPLH = 30 ns tPHL = 27 ns (max)

74LS20: Propagation delay tPLH = tPHL = 15 ns (max)
74LS30: Propagation delay tPLH= 15 ns, tPHL = 20 ns (max)
Net Propagation delay = 36 + 20 = 56 n secs (max)
� Realization by INVERTERS and NAND gates results in a

propagation delay of 55 (15+20+20) ns
� Demultiplexer solution to the realisation of logical

expressions can reduce the net chip count

December 2006 N.J.Rao M4L4 12

Example 2

Y1 =  (0, 2, 5, 6)

0

1

2

E N

0
1

3

4

5

6

7

2

G 0
7
_

DMUX

&

X3

X2

H

138

Y1

X1

December 2006 N.J.Rao M4L4 13

Example 2 (2)

If one of the variables X1 is Asserted Low

X1 X2 X3 /X1 X2 X3 Y
0 0 0 1 0 0 1
0 1 0 1 1 0 1
1 0 1 0 0 1 1
1 1 0 0 1 0 1

December 2006 N.J.Rao M4L4 14

Example 2 (3)

0

1

2

E N

0
1

3

4

5

6

7

2

G 0
7
_

DMUX

&

X3
X2

H

138

X1 Y1/

Demultiplexer

A decoder/demultiplexer is a combinational circuit that asserts one of several outputs

in response to a unique input code. It is a unit with n-inputs and m-outputs, where

m < 2n. An output switches from Not Asserted state to an Asserted state, when the

input code is switched to a specific one. When m = 2n, each one of the outputs can

be associated with a Minterm of n-variables. Hence, such a decoder is known as

Minterm Recogniser. Schematic of a 3-input demultiplexer is shown in figure 1.

0
1
2

EN

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

FIG. 1: Schematic of a 3-input demultiplexer

In the demultiplexer illustrated, each one of the outputs have an AND (G)

dependence on one of the input codes, while, Enable inputs can be used to

disable/enable the entire functional unit. Some of the available decoders/

demultiplexers in the bipolar and CMOS families are listed below:

Dual 1-of-4 demultiplexer

2-state AL outputs: 74LS139/74HC139A

2-state AL outputs and common addressing: 74LS155

AL OC outputs and common addressing: 74LS156

3-state AH outputs: 74LS539

1-of-8 demultiplexer

AL outputs and 3 Enable inputs: 74LS138/ 74HC138A

AL outputs, 2 Enable, Address latch with latch enable: 74LS137

1-of-10 demultiplexer (2-state AL outputs): 74LS42

1-of-16 demultiplexer (AL outputs and 2 Enable inputs): 74LS154/74HC154

The uses of a demultiplexer include traditional demultiplexing operations as well as

realisation of logic functions.

Decoding and Demultiplexing Functions

One of the traditional uses of a demultiplexer is to use it in combination with a

multiplexer to transmit a number of signals over a single line. An 8-channel

multiplexer-demultiplexer combination is shown in the figure 2.

FIG. 2: An 8-channel multiplexer-demultiplexer combination

Notice that one of the Enable inputs of the demultiplexers is used as its data input.

Though this illustration indicates that the address lines are tied together, in an actual

signal transmission unit that uses such a MUX-DEMUX combination a different

method will have to be used to change the addresses of both the units

simultaneously.

Demultiplexers/decoders are extensively used in interfacing display units in a digital

system with the rest of the hardware, and in decoding the addresses of the memory

systems. In some of the applications, it may become necessary to string a number of

demultiplexers together. Figure 3 presents a 1-to-32 demultiplexer using four

74LS138 units and one 74LS139.

0

1

2

E N

G 0
7
_

D M U X

0
1
2
3
4
5
6
7

0
1
2

1
2
3
4
5
6
7

0

G 0
7

MUX

Y DATA

SO
S1
S2

CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8

CH1
CH2
CH3
CH4
CH5
CH6
CH7
CH8

FIG. 3: 1-to-32 demultiplexer

The important characteristics the designer must compute and take into account are

the delay times from the data and the address inputs to the output. The delay times

associated with 74LS138 are:

74LS138: Propagation delays

 Address to output tPLH = 27 ns tPHL= 39 ns (max)

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

H

138

}
O1
O2
O3
O4
O5

O6
O7
O8

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

H

138

}
O9
O10
O11
O12
O13

O14
O15
O16

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

H

138

}
O17
O18
O19
O20
O21
O22

O23
O24

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

H

138

}
O25
O26
O27
O28
O29

O30
O31
O32

EN

0

1}G_0
3

0
1
2
3

DMUX '139X2

X1

X5

X4

X3

 Enable to output tPLH = 26 ns tPHL = 38 ns (max)

74LS139: Propagation delays

 Address to output tPLH = 29ns tPHL= 38 ns (max)

 Enable to output tPLH = 24 ns tPHL = 32 ns (max)

The worst case delay time from the most significant bits of the input address to

output of 1-to-32 demultiplexer is 76 n secs. The delay from the data input to output

is 70 n secs.

Realization of Logic functions

A logical expression in the Sum-of-Product form is nothing but ORing of a selected

set of Minterms. As a demultiplexer is essentially a Minterms generator, it is possible

to use a demultiplexer to realise a logical expression along with a gate to do the

necessary ORing of the required Minterms. In comparison to the multiplexer, a

demultiplexer needs additional hardware to realise a logical expression. However,

this can be turned into an advantage in situations where more than one expression

of the same logic variables has to be implemented. One demultiplexer which

generates all the Minterms, and a number (equal to the number of logical

expressions) of OR gates, will suffice. The following example illustrates this use of

demultiplexers.

Example 1: Realise the following logical expressions using demultiplexers:

 Y1 = Σ (0, 2, 4, 5, 6, 11)

 Y2 = Σ (0, 3, 4, 7, 8)

 Y3/ = Σ (1, 3, 6, 14)

 Y4 = Σ (8, 13, 15)

As the expressions are in four variables, 74LS154 (1-to-16 demultiplexer) is used.

The hardware realisation is shown in the figure4. Note that the OR function can

actually be realised by a NAND gate, as the outputs of the demultiplexer are

Asserted Low.

X0'
X1'
X2'
X3'
X4'
X5'
X6'
X7'
X8'
X9'
X10'
X11'
X12'
X13'
X14'
X15'

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

&

DMUX-154
0
1
2
3

-D
-C
-B
-A

G
0_
7 X0'

X2'
X4'
X5'
X6'

X11'

X0'
X3'
X4'
X7'
X8'
X1'
X3'
X6'
X14'

X8'
X13'
X15'

Y1

Y2

Y3'

Y4

EN

FIG. 4: Realisation of the functions given in Example 1

The Propagation delay of this circuit can be computed as:

74LS154: Propagation delays

 Address to output tPLH = 36 ns tPHL= 33 ns (max)

 Enable to output tPLH = 30 ns tPHL = 27 ns (max)

74LS20: Propagation delay

 tPLH = tPHL = 15 ns (max)

74LS30: Propagation delay

 tPLH = 15 ns, t PHL = 20 ns (max)

Net Propagation delay = 36 + 20 = 56 n secs (max)

If these expressions are to be realised using INVERTERS and NAND gates, we require

three-level gating (one level of INVERTERS and two levels of NANDs), which would

result in a propagation delay of 55 (15+20+20) n secs. Hence, the demultiplexer

solution does not give any speed advantage over the traditional realisation of logical

expressions using gates, whereas, the multiplexer realisation gave a marginal speed

advantage. However, demultiplexer solution to the realisation of logical expressions

can greatly reduce the net chip count, at least in some cases.

It is also possible to take into account if some of the variables in the logic expression

are Asserted Low. The solution is very similar to the procedure adapted in the case of

multiplexers, viz., either through changing assertion levels of the Asserted Low

variables or by taking into account the fact that incompatibility at the input results in

the complementation of the variables in the output logic expression. This is

illustrated in the example 2

Example 2: Realise the logical expression Y1 = Σ (0, 2, 5, 6) of three variables X1,

X2 and X3 using 74LS138. Indicate how the realization of the expression would vary

if the variable X1 is changed to an asserted-low variable

Figure 5 shows the realization of logical expression for Y1 by a demultiplexer solution

where.

FIG. 5: Realisation of the function given in the Example 2

The modified truth-table for this expression is as given in the following. The

corresponding hardware realisation of the logic expression, where the assertion level

of the variable X1 is not altered is given in the figure 6.

 X1 X2 X3 /X1 X2 X3 Y

 0 0 0 1 0 0 1
 0 1 0 1 1 0 1
 1 0 1 0 0 1 1
 1 1 0 0 1 0 1

FIG.6: Modified realisation of the function given in the example 2

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

X3
X2

H

138

Y1

X1

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

X3
X2

H

138

X1 Y1/

Digital Electronics
Module 4: Combinational Circuits:

Addition

N.J. Rao
Indian Institute of Science

id2363959 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

December 2006 N.J.Rao M4L5 2

Addition

� Addition is the most fundamental arithmetic operation.
� All the other arithmetic operations can be expressed in

terms of addition.
� It is desirable for a digital designer to be familiar with the

realisation of simple arithmetic functions using
combinational circuits.

� Many of these conventions and procedures are carried
over to the software level while designing with LSIs.

December 2006 N.J.Rao M4L5 3

Simple Adders

Adding two one-bit numbers

1011

0101

0110

0000

CSBA S = A B/ + A/ B = A B
C = A . B

A

B
S

C

December 2006 N.J.Rao M4L5 4

Addition of multi-bit numbers

� This requires an adder unit that performs addition with three bits.
� Such an adder is called Full-Adder.

11111

10011

10101

01001

10110

01010

01100

00000

CiSiCi-1BiAi

December 2006 N.J.Rao M4L5 5

Addition of multi-bit numbers (2)

Si = Ai
/ Bi

/ Ci-1 + Ai
/ Bi Ci-1

/ + Ai Bi
/ Ci-1

/ + Ai Bi Ci-1

Ci = Ai
/ Bi Ci-1 + Ai Bi

/ Ci-1 + Ai Bi Ci-1
/ + Ai Bi Ci-1

= Bi Ci-1 + Ai Ci-1 + Ai Bi

S

C o u t

i-1

December 2006 N.J.Rao M4L5 6

Addition of multi-bit numbers (3)

Full adder in terms of half-adders

B i

Ai

C i-1

A

B

S

C

A

B

S
Si

Ci

December 2006 N.J.Rao M4L5 7

4-bit adders



CO CI

 B

 A



CO CI

 B

 A



CO CI

 B

 A



CO CI

 B

 A

A1

B1

Cin

A2

B2

A3

B3

S1

S2

S3

S4

C4

A4

B4 FA

FA

FA

FA The carry bit will have to
ripple through all the stages
and the delay of the four bit
adder will be four times the
delay associated with single
bit full adders.

December 2006 N.J.Rao M4L5 8

MSI adders
74LS283 (4-bit full adder)
74LS181 (4-bit arithmetic logic unit)

P0
Q0

F0

P1
Q1

F1

P2
Q2

P3
Q3

F2

F3

0

4

M0
4

CP
CG
CO

P=Q
CI

ALU'181

CI CO

'283
0

3
0

3

0

3

P

Q



tPLH tPHL

CI to S (max) 24 24 ns
CI to CO (max) 17 22 ns
A, B to S (max) 24 24 ns
A, B to CO (max) 17 17 ns

December 2006 N.J.Rao M4L5 9

16-bit adders

CI CO

'283
0

3

0

3

0

3

P

Q



CI CO

'283
0

3

0

3

0

3

P

Q



CI CO

'283
0

3

0

3

0

3

P

Q



CI CO

'283
0

3

0

3

0

3

P

Q



S0

S1
S2
S3

S4

S5
S6
S7

S8
S9
S10
S11

S12

S13
S14
S15

C15C0

A0

A1
A2

A3
B0
b1
B2
B3

A4
A5
A6
A7
B4
B5
B6

B7

A9
A10

A11
B8
B9

B10

B11

A8 A12
A13

A14

A15
B12
B13
B14

B15

Addition time = tP(CI1 to CO1) + tP(CI2 + CO2) + tP(CI3 to CO3) +
tP(CI4 to S)

= 22 + 22 + 22 + 24
= 90 ns

Addition time is 108 ns if 74LS181 is used
Addition time is 42 ns if 74S181 is used

December 2006 N.J.Rao M4L5 10

Limitations of 4-bit adders

� Internal circuitry of the 4-bit adders is optimised to
provide minimum delay

� The carry bit has to ripple from one group of bits to the
next group in the case of 16-bit, 32-bit and 64-bit adders

� This will increase the addition time significantly.
� Add extra circuitry that can determine the final carry bit

without waiting for it to ripple through all the stages.
� Such an arrangement is called Carry Look Ahead

feature.

December 2006 N.J.Rao M4L5 11

Carry Look Ahead

Carry Generator, Gi = Ai Bi

Carry Propagator, Pi = Ai + Bi
C1 = A0 B0+ C0 (A0 + B0) = G0 + C0 P0
C2 = A1 B1 + C1 (A1 + B1)

= G1 + C1 P1 = G1 + P1 G0 + P1 P0 C0
C3 = A2 B2 + C2 (A2 + B2) = G2 + C2 P2

= G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0
C4 = A3 B3 + C3 (A3 + B3) = G3 + C3 P3

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 +
P3 P2 P1 P0 C0

December 2006 N.J.Rao M4L5 12

Carry Look Ahead (2)

� 74LS283 incorporates this feature to minimise the
associated delay.

� 74LS182, called Carry Look Ahead Generator, can
accept these group-carry signals from the four ALUs to
generate final carry bit in the case of 16-bit addition

� If 64-bit adder is to be built, a second level carry look
ahead generator, taking the group carry signals from
each group of 16 bits, will have to be used.

December 2006 N.J.Rao M4L5 13

16-bit adder with carry look ahead

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG

CO

P=Q

CI

ALU'181

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG

CO

P=Q

CI

ALU'181

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG
CO

P=Q

CI

ALU'181

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG

CO

P=Q

CI

ALU'181

H
L
L
H
L

H

HH

H
L
L

L

LL
L

L

H

H

L
L

L

A8

A9

A10

A11

A12

A13

A14

B12

B13

B14B10

B9

B8
A4
B4

A5

B5

A6
B6

A7

B7 B11

A15

B15

A0
B0

A1

B1

A2
B2

A3

B3

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

CP0
CP1
CP2
CP3
CG0
CG1
CG2
CG3

CP

CG

C00
C01
CO2

'182

31313131

December 2006 N.J.Rao M4L5 14

Subtraction

Normally subtraction is performed by changing the sign of
subtrahend and adding it to the minuend.

Ways of representing the signed numbers:
� sign-magnitude
� one�s complement
� two�s complement forms
� BCD representations

December 2006 N.J.Rao M4L5 15

Addition and subtraction
(2�s complement)

�Add the two numbers and ignore the carry�
�Overflow occurs when there is a carry into the sign-bit
position and no carry out of the sign-bit position, and
vice-versa�

The overflow may, therefore be realised by

The sign changing is done by complementing the
subtrahend and adding a 1 in the least significant bit
position.

A mode signal has to be created to instruct the unit whether
the addition or subtraction should take place.

December 2006 N.J.Rao M4L5 16

9-bit 2�s complement adder

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

'86

'86

OF1

0


























































'86

ADD'/SUB

Addition

Addition is the most fundamental arithmetic operation. All the other arithmetic

operations can be expressed in terms of addition. Some time ago the design of the

central processing unit and the consequent speed of the digital computer depended

greatly on the design of the adder hardware. Design of a multi-bit fast adder was

one of the skills that a digital designer had to acquire in the early era of computers.

The availability of low cost general purpose LSI circuits like microprocessors and

digital signal processors, and the availability cost effective technology for realising

special purpose LSIs changed the scene radically. At present the need for designing

an arithmetic unit from a large collection of SSI and MSI circuits does not exist.

However, it is desirable for a digital designer to be familiar with the realisation of

simple arithmetic functions using combinational circuits. Many of these conventions

and procedures are carried over to the software level while designing with LSIs. This

Unit presents only the very basics of adders based on combinational circuits.

Simple Adders

The simplest binary addition is to add two one-bit numbers. When the sum of two

bits is more than 1 it is considered as an overflow and we generate a ‘carry’ bit. The

truth-table associated with this addition process is given in the following, with A and

B as the input one-bit numbers, S as the sum and C as the carry.

A B S C

0 0 0 0

0 1 1 0

1 0 1 0

1 1

0 1

The combinational circuit for the addition of two one-bit numbers is known as Half

Adder. The logical expressions for the two outputs, S and C, may be written from

the above truth-table as;

 S = A B/ + A/ B = A B

 C = A . B

The gate level realisation of a half-adder is shown in the figure 1.

A
B

S

C

FIG. 1: Half adder

A half-adder has only provision to add two bits. If multi-bit numbers are to be added

provision is to be made to take the carry bits coming from the previous stages. This

requires an adder unit that performs addition with three bits. Such an adder is called

Full-Adder. Let Ai and Bi be the i'th bits of an n-bit number, Ci-1 be the carry bit from

the i-1 stage of addition, Si be the i'th bit of the sum, and Ci be the carry bit from the

i'th stage of addition. The truth-table of a full adder is

Ai Bi Ci-1 Si Ci

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1

1 1

The logical expressions for the Sum and Carry bits can be written as in the following

 Si = Ai
/ Bi / Ci-1 + Ai

/ Bi Ci-1
/ + Ai Bi

/ Ci-1
/ + Ai Bi Ci-1

 Ci = Ai
/ Bi Ci-1 + Ai Bi

/ Ci-1 + Ai Bi Ci-1
/ + Ai Bi Ci-1

 = Bi Ci-1 + Ai Ci-1 + Ai Bi

The realisation of the full adder using gates is shown in the figure 2.

FIG. 2: Full adder realised with basic gates

S

Cout

-1

However, the full adder can also be realised in terms of half-adders as shown in the
figure 3.

FIG. 3: Full adder realised by two half-adders

Adders for adding single bit numbers are of hardly any use in practice. Addition of

multiple bit numbers requires cascading of a number of full adders. A 4-bit adder

put together with four single bit full adders is shown in the figure 4.

FIG. 4: 4-bit binary adder

It may be noted that the carry bit will have to ripple through all the stages and the

delay of the four bit adder will be four times the delay associated with single bit full

adders. Besides, building such a circuit with basic gates or half adders requires large

number of SSI circuits. There are two MSI circuits that offer four bit addition,

available from all the vendors. These are 74LS283 (4-bit full adder) and 74LS181 (4-

bit arithmetic logic unit). 74LS181 is more than a adder, and can perform a variety

of arithmetic and logic functions which can be selected by a set of control and mode

signals The logical symbols of 74LS283 and 74LS181 are shown in the figure 5.

Bi

Ai

C i-1

A

B

S

C

A

B

S Si

Ci

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

A1

B1

Cin

A2

B2

A3

B3

S1

S2

S3

S4

C4

A4

B4 FA

FA

FA

FA

P0
Q0

F0

P1
Q1

F1

P2
Q2

P3
Q3

F2

F3

0

4

M 0
4

CP
CG
CO

P=Q
CI

ALU'181

CI CO

'283
0

3
0

3

0

3

P

Q

Σ

FIG. 5: Schematic representations of 74LS181 and 74LS283

The internal circuitry of the 74LS283 is optimised to give minimum possible delay

times between all the inputs and outputs. These propagation delays are listed in the

following:

 tPLH tPHL

 CI to Σ (max) 24 24 ns

 CI to CO (max) 17 22 ns

 A, B to Σ (max) 24 24 ns

 A, B to CO (max) 17 17 ns

Adders with Features

It often becomes necessary to build adders for numbers much larger than 4-bit
numbers. A 16-bit adder built with four units of 74LS283s is shown in the figure 6.

CI CO

'283
0

3

0

3

0

3

P

Q

Σ

CI CO

'283
0

3

0

3

0

3

P

Q

Σ

CI CO

'283
0

3

0

3

0

3

P

Q

Σ

CI CO

'283
0

3

0

3

0

3

P

Q

Σ

S0
S1
S2
S3

S4
S5
S6
S7

S8
S9
S10
S11

S12
S13
S14
S15

C15C0

A0
A1
A2
A3
B0
b1
B2
B3

A4
A5
A6
A7
B4
B5
B6
B7

A9
A10
A11
B8
B9

B10
B11

A8 A12
A13
A14
A15
B12
B13
B14
B15

FIG. 6: 16-bit adder using 74LS283s

The most important parameter of an adder is the addition time. The addition time

for the 16-bit adder using 74LS283s is given by;

 Addition time = tP(CI1 to CO1) + tP(CI2 + CO2) + tP(CI3 to CO3) + tP(CI4 to Σ)

 = 22 + 22 + 22 + 24

 = 90 ns

If 74LS283 is replaced by 74LS181 the delay time will be slightly larger, as the

circuitry within this unit is more complex. The net addition time for a 16-bit adder

will be 108 ns. If a faster unit like 74S181 is used the addition time gets reduced to

42 ns.

While the internal circuitry of the available adder units is optimised to provide

minimum delay for the addition of 4-bit numbers, the carry bit has to ripple from one

group of bits to the next group in the case of a 16-bit adder. When the addition

involves numbers that are 32-bit or 64-bit long, the carry bit will have to ripple

through 8 and 16 stages of adders respectively. This will increase the addition time

significantly. One method of reducing the addition time is to add extra circuitry that

enables the determination of the final carry bit without waiting for it to ripple through

all the stages. Such an arrangement is called Carry Look Ahead feature. This is

based on deciding independently whether a particular stage in addition generates a

carry bit or merely propagates the carry bit coming from the previous stage. Let Ai

and Bi be the two i'th bits of multi-bit numbers A and B respectively. A carry bit is

generated from this stage to the next one, whether there is a carry bit from the

previous stage or not, if both bits are 1s. The carry bit from the previous stage is

propagated to the next stage if one of the bits or both of them are 1s. These two

functions, namely carry generate and carry propagate, can be defined as;

 Carry Generator, Gi = Ai Bi

 Carry Propagator, Pi = Ai + Bi

Let, in a 4-bit adder, CI be the carry bit into the first stage and C1, C2, C3 and C4 be

the carry bits from the four stages of addition. G0, G1, G2 and G3 are the carry

generates and P0, P1, P2 and P3 are the carry propagates from the four stages of

addition of the 4-bit adder. Then the relationships can be stated as below:

 C1 = A0 B0+ C0 (A0 + B0) = G0 + C0 P0

 C2 = A1 B1 + C1 (A1 + B1) = G1 + C1 P1 = G1 + P1 G0 + P1 P0 C0

 C3 = A2 B2 + C2 (A2 + B2) = G2 + C2 P2

 = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0

 C4 = A3 B3 + C3 (A3 + B3) = G3 + C3 P3

 = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0

C4 can, therefore, be generated independently of C1, C2, and C3 as P and G

functions can be generated from the A and B inputs directly. This is known as the

carry look ahead feature. The circuitry within the unit 74LS283 incorporates this

feature to minimise the associated delay. But it becomes necessary to have

additional circuitry to incorporate carry look ahead feature when an adder has to be

designed for numbers more than four. This can be done through generating group

carry generate and group carry propagate signals. In the context of commercially

available ICs, four bits constitute a group. The 74LS181 Arithmetic Logic Unit (ALU)

generates both group carry generate and group carry propagate signals. These

signals can be combined across stages in a manner similar to the relationships listed

above. 74LS182, called Carry Look Ahead Generator, can accept these group-carry

signals from the four ALUs to generate final carry bit in the case of 16-bit addition,

as shown in the figure 7.

If 64-bit adder is to be built, a second level carry look ahead generator, taking the

group carry signals from each group of 16 bits, will have to be used.

P0
Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP
CG

CO

P=Q
CI

ALU'181

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP
CG
CO

P=Q

CI

ALU'181

P0

Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG
CO

P=Q

CI

ALU'181

P0
Q0

F0

P1

Q1

F1

P2

Q2

P3

Q3

F2

F3

0

4

M
0

CP

CG
CO

P=Q

CI

ALU'181

H
L
L
H
L

H

HH

H
L
L

L

LL
L

L

H

H

L
L

L

A8

A9

A10

A11

A12

A13

A14

B12

B13

B14B10

B9

B8
A4
B4

A5
B5

A6
B6

A7
B7 B11

A15
B15

A0
B0

A1
B1

A2
B2

A3
B3

S0

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

S13

S14

S15

CP0
CP1
CP2
CP3
CG0
CG1
CG2
CG3

CP

CG

C00
C01
CO2

'182

31313131

FIG. 7: 16-bit adder with carry look-ahead feature

Combined Addition and Subtraction

Normally subtraction is performed by changing the sign of subtrahend and adding it

to the minuend. However, there are several ways of representing the signed

numbers. These include sign-magnitude, one’s complement, two’s complement forms

and BCD representations. Here we consider addition and subtraction operations with

numbers represented in two’s complement form. The reader is urged to work out the

hardware for other representations as exercises.

The algorithm for addition of two two’s complement numbers is

 “Add the two numbers and ignore the carry”

The algorithm for overflow is

 “Overflow occurs when there is a carry into the sign-bit position and no carry

out of the sign-bit position, and vice-versa”

The overflow may, therefore be realised by

The sign changing is done by complementing the subtrahend and adding a 1 in the

least significant bit position. A mode signal, therefore, has to be created to instruct

the arithmetic unit whether the addition or subtraction should take place. A 9-bit

two’s complement adder-subtractor is shown in the figure 8.

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

CI CO

A1
B1
A2
B2
A3
B3
A4
B4

S1
S2
S3
S4

'86

'86

OF1

0

Σ0
Σ1
Σ2
Σ3

Σ5
Σ4

Σ6
Σ7

Σ8

Β8

Β7

Β6

Β5

Β4

Β0

Β1

Β2

Β3

Β
Α

Α0

Α1

Α2

 Α3

Α4

Α5

Α6

Α7

Α8

'86

ADD'/SUB

FIG.3: 9-bit two’s complement adder-subtractor

APPENDIX: DEPENDENCY NOTATION

Introduction: Dependency Notation refers to the symbolic language developed as a part

of the Standard ANSI/IEEE Std-91-1984. This notation was evolved to indicate the

relationship of each input of a digital logic circuit to each output without explicitly showing

the internal logic. However, this notation can only be used with regard to circuits of

medium complexity and MSIs. When the MSIs are represented in this notation there would

not be any need to constantly refer to the data sheet to understand the logical relationship

between signals. This Appexdix introduces the basics of Dependency Notation. Its use with

regard to specific ICs will be elaborated in the related Modules. The material presented in

the following should be sufficient to understand and to draw the logic diagrams needed for

the design of digital systems of reasonable complexity.

General Definitions: IEEE Standard supports the notion of bubble-to-bubble logic design

in with some important terms encountered are explained in the following.

Logic State: One of two possible abstract states that may be taken on by a logic (binary)

variable.

0-State: The logic state represented by the binary number 0 and usually standing for Not

Asserted state of a logic variable.

1-State: The logic state represented by the binary number 1 and usually standing for

Asserted state of a logic variable.

External Logic State: A logic state assumed to exist outside symbol outline; (1) on an

input line prior to any external qualifying symbol at the input or (2) on output line beyond

any external qualifying symbol at that output.

Internal Logic State: A logic state assumed to exist inside a symbol outline at an input

or an output.

Qualifying Symbol: It is graphics or text added to the basic outline of a device logic

symbol to describe the physical or logical characteristics of the device. The “external

qualifying symbol” mentioned above is typically an inversion bubble, which denotes a

“negated” input or output, for which the external 0-state corresponds to the internal 1-

state. “Internal 1-state” may be interpreted as the corresponding signal getting asserted.

Similarly “internal 0-state” may be interpreted as the corresponding signal getting not-

asserted.

A symbol for a digital circuit comprises of an outline or a combination of lines together

with one or more qualifying symbols. Lines on the left hand side indicate inputs while the

lines on the right hand side indicate outputs. This concept of composing the symbol is

illustrated in the figure 1.

*

**

* *

**

*

General qualifying
Symbol

Output
lines

Outline

FIG. 1: Composition of a logic circuit symbol

General additional information may be included in a symbol outline in the diagrams for

digital circuits. A qualifying symbol is included at the top to indicate the general function

performed by the logic circuit under consideration. Some of these qualifying symbols to

indicate the device functions are listed in the following.

 SYMBOL DEVICE FUNCTION

 > OR

 & AND

 =1 Exclusive OR

 = All inputs at the same state

 2k Even number of inputs Asserted

 2k+1 Odd number of states Asserted

 Buffer

 Schmitt Trigger

 X/Y Code Converter

 MUX Multiplexer

 DX Demultiplexer

 Σ Adder

 P - Q Subtractor

 CPG Carry look-ahead generator

 ALU Arithmetic logic unit

 COMP Magnitude comparator

The input and output lines will have qualifying symbols inside the symbol outlines. These

qualifying symbols are illustrated in the following.

 SYMBOL SIGNAL FUNCTION

 Asserted Low input (External 0 = Internal 1)

 Asserted Low output (Internal 1 = External 0)

 Asserted High input (External 1 = Internal 1)

 Asserted High output (Internal 1 = External 1)

 Bithreshold input (Input with hysteresis)

 Open-collector or open-drain output

 Positive edge control input signal

 Negative edge control input signal

 3-State output

 Postponed output (pulse triggered flip-flop)

Enable input, when at its internal 1-state, all outputs are enabled.
 When at its internal 0-state all outputs are at the internal 0-state

 Data input to a storage element

 Shift right (left) inputs m= 1, 2, 3, etc.

 Counting up (down) inputs m= 1, 2, 3, etc.

 Binary Grouping. m is the highest power of 2.

 Content equals (e.g., 9)

 Internal connection

 Internal connection with negation

 Internal input (virtual input)

 Internal output (virtual output)

 Internal dynamic connection

When the logic circuit has one or more inputs that are common to more than one element

of the circuit, the symbol is modified to include a common control block. The distinctive

EN

m m

m m+ -

0
m }

CT=9

D

shaped control block adopted by IEC is shown in the figure 2. Unless otherwise qualified

specifically within the context of Dependency Notation the inputs to the control block are

assumed to be common to all the elements within the circuit.

A

B

C

D

A

B

C

D

FIG 2: Symbol for common control block

If an output is dependent on all the elements of the circuit it is shown as a common

output, and the common output element is distinctly shown by being separated from the

other elements by a double line as shown in the figure 3. It may be noted that in drawing

the symbols it is not permitted to represent the signals entering or leaving from the top or

bottom section of the logic symbol.

FIG 3: Symbol for common output block

Medium Scale Integrated (MSI) circuits available from many vendors are designed to

perform well defined combinational or sequential functions. The commonly available MSIs

include combinational circuits like multiplexers, demultiplexers, encoders, arithmetic units

and comparators, and sequential circuits like registers, counters and display controllers.

The aim of the Dependency Notation is to give a detailed description of the function of

each input/output and the interrelationship between signals of the IC within the symbol

itself, using simple codes. Such a notation will greatly help in designing with MSIs without

constant dependence on the data sheets. While the dependency notation can be used to

compose symbols for circuits that are composed of a few SSIs and MSIs, it is not always

possible to create a symbol for every circuit. For example it is not feasible to compose a

symbol for an LSI chip like a microprocessor, using the dependency notation.

Dependency notation is a means of denoting the relationships, between inputs, outputs or

inputs and outputs, without actually showing all the elements and interconnections

involved. It should not be used to replace the symbols for combinational elements. It

gives information that supplements that provided by the qualifying symbols for an

element's function. The signals are classified as `affecting' and `affected'. An input as well

as an output signal can be an affecting signal or affected signal. There are ten types of

dependencies identified under this Standard. These are explained in the following.

AND Dependency (G Dependency): A common relationship between two signals is to

have them ANDed together. This AND relationship in Dependency notation is shown as

indicated in the figure 4. The input B is ANDed with input A and the complement of B is

ANDed with C. the letter G has been chosen to indicate AND relationships and is placed at

input B, inside the symbol. An arbitrary number (1 has been used here) is placed after the

letter G and also at each affected input. Note the superscript slash after 1 at input C.

FIG. 4: G dependency between inputs

In figure 5 output B affects input A with an AND relationship. The lower example shows

that it is the internal logic state of B, unaffected by the negation sign that is ANDed.

FIG. 5: G dependency between outputs and inputs

Figure 6 shows A to be ANDed with a dynamic input B.

FIG. 6: G dependency with a dynamic input

The rules for G-dependency can be summarised as:

When a Gm input or output (m is a number) stands at its internal 1-state (Asserted) all

the inputs and outputs affected by this Gm stand at their normally defined internal logic

states.

When Gm input or Gm output stands at its internal 0-state (Not Asserted) all the inputs

and outputs affected by it stand at their 0-state (Not Asserted).

Conventions for the Application of Dependency Notation in General: The rules for applying

dependency relationships in general follow the same pattern as was illustrated for G-

dependency. Application of dependency notation is accomplished by:

Labelling the input (or output) affecting other inputs or outputs with a letter symbol

indicating the relationship involved followed by an identifying number, arbitrarily chosen.

Labelling each input or output affected by that affecting input (or output) with that same

number.

If it is the complement of the internal logic state of the affecting input or output that does

the affecting, then a bar is placed over the identifying numbers at the affected inputs or

outputs. If the affected input or output requires a label to denote its function this label will

be prefixed by the identifying number of affecting input. If an input or output is affected

by more than one affecting input, the identifying numbers of each of the affecting inputs

will appear in the label of the affected one, separated by commas. The left-to-right

sequence of these numbers is the same as the sequence of the affecting relationships.

If the labels denoting the functions of affected inputs or outputs must be numbers, the

identifying numbers to be associated with both affecting inputs and affected inputs or

outputs will be replaced by another character selected to avoid ambiguity

OR Dependency (V Dependency): The symbol denoting OR dependency is the letter V.

Each input or output affected by a Vm input or Vm output stands in an OR relationship

with this Vm input or output. When Vm input or output stands at its internal 1-state

(Asserted) all inputs an outputs affected by this Vm input or Vm output stand at their

internal 1-state (Asserted). When a Vm input or Vm output stands at its internal 0-state

(Not Asserted), all inputs and outputs affected by this Vm input or Vm output stand at

1

G1A A

B
B

&

their normally defined internal logic states. The nature of V dependency is illustrated in

the figure 7.

Negate Dependency (N Dependency): The symbol denoting negate dependency is the

letter N. Each input or output affected by an Nm input or Nm output stands in an Exclusive

OR relationship with this Nm input or Nm output. When Nm input or Nm output stands at

its internal 1-state (Asserted), the internal logic state of each input and each output

affected by this Nm input or Nm output is the complement of the normally defined internal

logic state of the input or output. When Nm input or Nm output stands at its internal 0-

state, all inputs and outputs affected by this Nm input or Nm output stand at their

normally defined internal logic states. This relationship is illustrated in the figure 8.

FIG. 7: V (OR) dependency

FIG 8: Illustration of N dependency

Interconnection Dependency (Z Dependency): The symbol denoting interconnection

dependency is the letter Z. Interconnection dependency is used to indicate the existence

of internal logic connections between inputs, outputs, internal inputs, and internal outputs,

in any combination. When a Zm input or Zm output stands at its internal 1-state

(Asserted), all inputs and outputs affected by this Zm input or Zm output stand at their

internal 1-states (Asserted), unless modified by additional dependency notation. When a

Zm input or Zm output stands at its internal 0-state Not Asserted, all inputs and outputs

affected by this Zm input or Zm output stand at their internal 0 states (Not Asserted),

unless modified by additional dependency notation. The nature of Z dependency is

illustrated in the figure 9.

Control Dependency (C Dependency): The symbol denoting control dependency is the

letter C. Control dependency should only be used for sequential elements. It implies more

than a simple AND relationship. It identifies an input that produces action, for example,

the edge-triggered clock of a bistable circuit or the level-operated data enable of a

transparent latch. When a Cm input or Cm output stands at its internal 1-state

(Asserted), the inputs affected by this Cm input or Cm output have their normally defined

effect on the function of the element. When a Cm input or Cm output stands at its internal

0-state (Not asserted), the inputs affected by Cm are disabled and have no effect on the

function of the element. This dependency is explained through examples in the figure 10.

FIG. 9: Illustration of Z dependency

FIG. 10: Illustration of Control dependency

S (Set) and R (Reset) Dependencies: The symbol denoting the set dependency is S

and the symbol denoting the reset dependency is R. Set and reset dependencies are used

if it is necessary to specify the effect of the combination R = S = 1 on a bistable element.

These dependencies should not be used if such specification is not necessary. When a Sm

input stands at its internal 1-state (Asserted) the outputs affected by this Sm input will

take on the internal logic states they normally would take on for the combination S = 1, R

= 0, regardless of the state of any R input. When an Sm input stands at its internal 0-

state (Not asserted) it has no effect.

When an Rm input stands at its internal 1-state (Asserted) the outputs affected by this

Rm input will take on the internal logic states they normally would take on for the

combination S = 0, R = 1 regardless of the state of the S input. When an Rm input stands

at its internal 0-state it has no effect. The R and S dependencies are illustrated in the

figure 11.

 a b c d
 0 0 No change
 0 1 0 1
 1 0 1 0
 1 1 Not specified

 a b c d
 0 0 No change

 0 1 0 1
 1 0 1 0
 1 1 1 0

 a b c d

 0 1 No change

0 1 0 1

1 0 1 0
1 1 0 1

a b c d

 0 1 No change
 0 1 0 1
 1 0 1 0
 1 1 1 1

a b c d
 0 1 No change
 0 1 0 1
 1 0 1 0
 1 1 0 0

FIG 11: Illustration of R and S dependencies

Enable Dependency (EN Dependency): The symbol denoting enable dependency is EN.

Enable dependency is used to indicate an Enable input that does not necessarily affect all

outputs of an element. It can also be used when one or more inputs of an element are

affected. When this input stands at its internal 1-state (Asserted), all the affected inputs

and outputs stand at their normally defined internal logic states and have their normally

defined effect on elements or distributed functions that may be connected to the outputs,

provided no other inputs or outputs have an overriding and contradicting effect. When this

input stands at its internal 0 state (Not Asserted), all the affected open-circuit outputs

stand at their external high-impedance states, all 3-state outputs stand at their normally

defined internal logic states and at their external high-impedance states, and other types

of outputs stand at their internal 0-states. The nature of EN dependency is illustrated in

the figure 12.

1

EN1

EN

A
D

1
B

C

If A = 0, B disabled and D = C If A = 1, C disabled and D = B

FIG 12: Illustration of the EN dependency

Mode Dependency (M Dependency): The symbol denoting mode dependency is the

letter M. Mode dependency is used to indicate that the effects of particular inputs and

outputs of an element depend on the mode in which the element is operating. When an

Mm input or Mm output stands at its internal 1-state (Asserted), the inputs affected by

this Mm input or Mm output have their normally defined effect on the function of the

element and the outputs affected by this Mm input or Mm output stand at their normally

defined internal logic states, that is, the inputs and outputs are enabled. When an Mm

input or Mm output stands at its internal 0-state, the inputs affected by this Mm input or

Mm output have no effect on the function of the element and at each output affected by

this Mm input or Mm output, any set of labels containing the identifying number of that

Mm input or output has no effect and is to be ignored. When an affected input has several

sets of labels separated by slashes, any set in which the identifying number of Mm input

or Mm output appears has no effect and is to be ignored. This represents disabling of

some of the functions of a multifunction input. When an output has several different sets

of labels separated by slashes, only those sets in which the identifying number of this Mm

input or Mm output appears are to be ignored. This represents disabling or selection of

some of the function of a multifunction output, or the modification of some of the

characteristics or dependent relationships of the output. These concepts are illustrated in

the figure 13.

The circuit in the figure 13 has two inputs, B and C, that control which one of four modes

(0, 1, 2, or 3) will exist at any time. Inputs D, E and F are D-inputs subject to dynamic

control (clocking) by the A input. The numbers 1 and 2 are in the series chosen to indicate

the modes of inputs E and F are only enabled in mode 1 (parallel loading) and input D is

only enabled in mode 2 (for serial loading). Note that input A has three functions. It is the

clock for entering data. In mode 2, it causes right shifting of data, which means a shift

away from the control block. In mode 3, it causes the contents of the register to be

incremented by one count.

M Dependency affecting Outputs : When an Mm input or Mm output stands at its internal

1 state, the affected outputs stand at their normally defined internal logic states, that is,

the outputs are enabled.

C4/2->/3+

0
1 } M--0

3

2,4D
1,4D

1,4D

A

B

C

D

E

F

FIG.13: Illustration of M dependency.

When an Mm input or Mm output stands at its internal 0 state, at each affected output any

set of labels containing the identifying number of that Mm input or Mm output has no

effect and is to be ignored. When an output has several different sets of labels separated

by slashes (e.g., C4/->/3+), only those sets in which the identifying number of this Mm

input of Mm output appears are to be ignored. In the figure 5.14, mode 1 exists when the

A input stands at its internal 1 state. The delayed output symbol is effective only in mode

1 (when input A = 1) in which case the device functions as a pulse-triggered flop-flop

(Master-Slave flip-flop). When the input A = 0, the device is not in mode 1 so the delayed

output symbol has no effect and the device functions as a transparent latch.

1

M1
C2

2D

A
B

C

D

FIG. 14: Type of flip-flop determined by mode

If in figure 15, if the input A stands at its internal 1 state establishing mode 1, output B

will stand at its internal 1 state when the content of the register equals 9. Since the

output B is located in the common-control block with no defined function outside of mode

1, this output will stand at its internal 0 state when input a stands at its internal 0 state,

regardless of the register content.

M1A
B

1CT=9

FIG. 15: Disabling an output of the common-control block

Address Dependency (A Dependency): The symbol denoting address dependency is

the letter A. Address dependency provides a clear representation of those elements,

particularly memories that use address control inputs to select specified sections of a

multidimensional array. Address dependency allows a symbolic representation of only a

single general case of the sections of the array, rather than requiring a symbolic

representation of the entire array. When this input stands at its internal 1-state

(ASSERTED), the inputs affected by this input (that is, the inputs of the section of the

array selected by this input) have their normally defined effect on the elements of the

selected section. Also, the internal logic states of the outputs affected by this input (that

is, the outputs of the selected section) have their normal effect on the OR function (or the

indicated functions) determining the internal logic states of the outputs of the array.

When the input stands at its internal 0-state (Not asserted), the inputs affected by this

input (that is, the inputs of the section selected by this input) have no effect on the

elements of this section. Also, the outputs affected by this input (that is, the outputs of

the section selected by this input) have no effect on the outputs of the array. An affecting

address input is labelled with the letter A followed by an identifying number that

corresponds to the address of the particular section of the array selected by this input.

The nature of address dependency is illustrated in the figure 16.

A

B

C

D

A1

A2

A3

C4

A

B

C

D

A1

A2

A3

C4

 A,4DE

G

F

H
1,4D

2.4D

3,4D

1,4D

2,4D
3,4D

E

G

F

H

> 1

> 1

FIG 16: Illustration of address dependency.

Symbols based on the Dependency Notation, of some of the commonly encountered

integrated circuits are given in the figure 17. The reader is advised to understand and

interpret the function and operation of these integrated circuits using the dependency

notation.

0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

X3
X2

H

138
0

G
_
3

MUX
0
1

0
1
2
3

S0
S1

DI0
DI1
DI2

DI3

Y

'164

R

C1/1

& 1D

R
C1/

195A
M1

1, 2 J

1, 2 K
1', 2 D

1', 2 D

FIG. 17: Symbols of some common integrated circuits.

DRAWING DIGITAL CIRCUIT DIAGRAMS

The gate shown in the figure 18(a) is not commercially available. However, a minor

modification will establish this correspondence. This is shown in the figure 18(b). Each one

of the gates shown will correspond to the gates that are commercially available.

FIG. 18: Redrawing of a logic symbol to correspond to the actual gates used.

Documentation is an important aspect of any design exercise. Any such documentation

must be consistent, use standard symbols and follow unambiguous procedures. Many

varieties of documents need to be prepared to describe a given digital system

exhaustively. It is necessary for any organisation concerned with the design and

development and/or manufacturing and marketing of digital systems to evolve and

implement a documentation standard for effective communication between individuals

concerned with various aspects of the product. The basic rules to be followed in drawing

the digital circuit diagrams will be presented in the following.

The basic rules are:

 All signals flow from left to right. In case of any deviation from this convention the

direction must be indicated by an arrow. Such a need may arise when there is

requirement to feed the output of a circuit module to the input of circuit module

which is otherwise upstream from the signal flow point of view.

 External inputs should enter the left hand side of the diagram. Outputs from the

circuit should be shown in the right hand side.

 Use polarised mnemonic notation and all the standard symbols thereof.

 Use dependency notation to represent any MSI and LSI circuits.

 All signals should have properly defined mnemonics with their assertion levels

indicated.

 All gates represented in the circuit diagram must correspond to the actual

hardware elements used. But the choice of operator symbol (NAND, NOR, OR,

EXOR ETC.) for gates must be indicative of the function they perform.

 Each operator symbol should be given a number to correspond with the actual IC

used. These are designated as U1, U2 etc. A particular number, say U2, may be

given to more than one logic operator as an IC may have more than one functional

element.

 The pin numbers corresponding to the specific IC used should be shown near the

inputs or the outputs of the logic operator, or outside the symbol outline in the

case of MSIs and LSIs.

 The specific ICs used along with their pin numbers for VCC and GND (VBB) should be

shown at a convenient place on the circuit diagram.

 If the circuit diagram is large and is to be drawn on a large sheet, zonal co-

ordinates should be incorporated.

 If a discontinuity is to be introduced in a signal line, its destination or source, if

needed in terms of zonal coordinates, should be indicated at the discontinuity.

Consider the circuit diagram shown in the figure19. It is redrawn as per the rules stated

above and shown in the figure 20.

FIG. 19: Example of a combination circuit

FIG. 20: Circuit diagram of figure 20 redrawn as per the rules of documentation standard

	DIGITAL SYSTEMS
	Lecture Plan
	Learning Objectives of the Course
	Motivation
	Module 1: Number Systems and Codes
	Learning Objectives
	Learning Unit 1: Number Systems
	Slides
	Webpages
	Number Systems
	Number System Conversions
	Representation of Negative Numbers

	Multiple Choice Questions
	Problems

	Learning Unit 2: Codes
	Slides
	Webpages
	Introduction
	Binary Coded Decimal Codes
	Unit Distance Codes
	Alphanumeric Codes
	Error Detection and Correcting Codes

	Problems

	Module 2: Boolean Algebra and Boolean Operators
	Learning Unit 1: Bolean Algebra
	Slides
	Webpages
	What is Boolean Algebra?
	Boolean Algebra and Huntington Postulates
	Propositions from Huntington’s Postulates
	Boolean Operators

	Learning Unit 2: Logic Functions
	Slides
	Webpages
	Logic Functions
	Logic Functions in Algebraic Form
	Truth Table Description of Logic Functions
	Conversion of English Sentences to Logic Functions
	Minterms and Maxterms
	Circuit Representation of Logic Functions

	Learning Unit 3: Karnaugh Map Method
	Slides
	Webpages
	Karnaugh-Map
	Minimization with Karnaugh Map

	Learning Unit 4: Quine-McCluskey Method
	Slides
	Webpages
	Quine-McCluskey Method of Minimization

	Module 3: Logic Families
	Learning Unit 1: Introduction
	Slides
	Webpages
	Properties of a Logic Family
	Electrical Characteristics of Schottky TTL Family

	Learning Unit 2: TTL Family
	Slides
	Webpages
	TTL Family : Introduction

	Learning Unit 3: CMOS Family
	Slides
	Webpages
	CMOS FAMILY

	Learning Unit 4:ECL Family
	Slides
	Webpages
	ECL Family

	Module 4: Combinational Circuits
	Learning Unit 1: An Introduction
	Slides
	Webpages
	Introduction
	Polarised Mneomonic Convention
	Electronic Circuits and Logic Functions
	Logic Convention

	Learning Unit 2: Logic Functions
	Slides
	Webpages
	Introduction
	Gate Level Implementation of Logic Expressions
	Delay
	Hazards
	Loading
	Larger Output Voltage Swing
	Wired Logic Operations
	Tristate Gates

	Learning Unit 3: Multiplexers
	Slides
	Webpages
	Multiplexers

	Learning Unit 4: Demultiplexers
	Slides
	Webpages
	Demultiplexer

	Learning Unit 5: Addition
	Slides
	Webpages
	Addition

	Appendix

