
 

 

DIGITAL SYSTEMS: Course Objectives and Lecture Plan 

Aim: At the end of the course the student will be able to analyze, design, and 
evaluate digital circuits, of medium complexity, that are based on SSIs, MSIs, and 
programmable logic devices. 

Module 1: Number Systems and Codes (3) 

Number systems: Binary, octal, and hexa-decimal number systems, binary 
arithmetic. Codes: Binary code, excess-3 code, gray code, and error detection and 
correction codes.  

Module 2: Boolean Algebra and Logic Functions (5) 

Boolean algebra: Postulates and theorems. Logic functions, minimization of Boolean 
functions using algebraic, Karnaugh map and Quine – McClausky methods. 
Realization using logic gates  

Module 3: Logic Families (4) 

Logic families: Characteristics of logic families. TTL, CMOS, and ECL families. 

Module 4: Combinational Functions (8) 

Realizing logical expressions using different logic gates and comparing their 
performance. Hardware aspects logic gates and combinational ICs: delays and 
hazards. Design of combinational circuits using combinational ICs: Combinational 
functions: code conversion, decoding, comparison, multiplexing, demultiplexing, 
addition, and subtraction. 

Module 5: Analysis of Sequential Circuits (5) 

Structure of sequential circuits: Moore and Melay machines. Flip-flops, excitation 
tables, conversions, practical clocking aspects concerning flip-flops, timing and 
triggering considerations. Analysis of sequential circuits: State tables, state diagrams 
and timing diagrams.   

Module 6: Designing with Sequential MSIs (6) 

Realization of sequential functions using sequential MSIs: counting, shifting, 
sequence generation, and sequence detection. 

Module 7:  PLDs (3) 

Programmable Logic Devices: Architecture and characteristics of PLDs,  

Module 8: Design of Digital Systems (6) 

State diagrams and their features. Design flow: functional partitioning, timing 
relationships, state assignment, output racing. Examples of design of digital systems 
using PLDs



 

 

Lecture Plan 

 
Modules Learning Units Hours 

per 
topic 

Total 
Hours 

1. Binary, octal and hexadecimal number 
systems, and conversion of number with 
one radix to another 

1.5 1. Number 
Systems and 
Codes 

2. Different binary codes 1.5 

 
3 

3. Boolean algebra  and Boolean operators 1.5 
4. Logic Functions 1 
5. Minimization of logic functions using 

Karnaugh -map  
1.5 

2. Logic 
Functions  

6. Quine-McClausky method of minimization of 
logic functions  

1 

 
 
5 

7. Introduction to Logic families 0.5 
8. TTL family 1 
9. CMOS family 1.5 

3.Logic Families 

10. Electrical characteristics of logic families 1 

 
 
4 

11. Introduction to combinational circuits, logic 
convention, and realization of simple 
combinational functions using gates 

2 

12. Implications of  delay and hazard  1 
13. Realization of adders and subtractors 2 
14. Design of code converters, comparators, 

and decoders 
2 

4. Combinational  
Circuits 
 

15. Design of multiplexers, demultiplexers, 1 

 
 
 
8 
 
 

16. Introduction to sequential circuits: Moore 
and Mealy machines 

1 

17. Introduction to flip-flops like SR, JK, D & T 
with truth tables, logic diagrams, and 
timing relationships 

1 

18. Conversion of Flip-Flops, Excitation table 1 

5. Analysis of 
Sequential  
  Circuits 

19. State tables, and realization of state stables 2 

 
 
 
5 

20. Design of shift registers and counters 2 
21. Design of counters 2 

6. Design with 
Sequential MSIs 

22. Design of sequence generators and 
detectors 

2 

 
6 

23. Introduction to Programmable Devices 1 7. PLDs 
24. Architecture of PLDs 2 

 
3 

25. State diagrams and their features  2 
26. Design flow 1 

8. Design of 
Digital Systems 

27. Design of digital systems using PLDs 3 

 
6 



 

 

Learning Objectives of the Course 

1. Recall 

1.1 List different criteria that could be used for optimization of a digital circuit. 

1.2 List and describe different problems of digital circuits introduced by the hardware 
limitations. 

2. Comprehension 

2.1 Describe the significance of different criteria for design of digital circuits. 

2.2 Describe the significance of different hardware related problems encountered in 
digital circuits. 

2.3 Draw the timing diagrams for identified signals in a digital circuit. 

3. Application 

3.1 Determine the output and performance of given combinational and sequential 
circuits. 

3.2 Determine the performance of a given digital circuit with regard to an identified 
optimization criterion. 

4. Analysis 

4.1 Compare the performances of combinational and sequential circuits implemented 
with SSIs/MSIs and PLDs.  

4.2 Determine the function and performance of a given digital circuit. 

4.3 Identify the faults in a given circuit and determine the consequences of the same 
on the circuit performance. 

4.4 Draw conclusions on the behavior of a given digital circuit with regard to 
hazards, asynchronous inputs, and output races. 

4.5 Determine the appropriateness of the choice of the ICs used in a given digital 
circuit. 

4.6 Determine the transition sequence of a given state in a state diagram for a given 
input sequence. 

5. Synthesis 

5.1 Generate multiple digital solutions to a verbally described problem. 

5.2 Modify a given digital circuit to change its performance as per specifications. 

6. Evaluation 

6.1 Evaluate the performance of a given digital circuit. 

6.2 Assess the performance of a given digital circuit with Moore and Melay 
configurations. 

6.3 Compare the performance of given digital circuits with respect to their speed, 
power consumption, number of ICs, and cost. 



 

Digital Systems: Motivation  

A digital circuit is one that is built with devices with two well-defined states.  Such circuits 

can process information represented in binary form. Systems based on digital circuits touch 

all aspects our present day lives. The present day home products including electronic 

games and appliances, communication and office automation products, computers with a 

wide range of capabilities, and industrial instrumentation and control systems, electro-

medical equipment, and defence and aerospace systems are heavily dependent on digital 

circuits.  Many fields that emerged later to digital electronics have peaked and levelled off, 

but the application of digital concepts appears to be still growing exponentially.  This 

unprecedented growth is powered by the semiconductor technology, which enables the 

introduction of more and complex integrated circuits.  The complexity of an integrated 

circuit is measured in terms of the number of transistors that can be integrated into a 

single unit. The number of transistors in a single integrated circuit has been doubling every 

eighteen months (Moore’ Law) for several decades and reached the figure of almost one 

billion transistors per chip. This allowed the circuit designers to provide more and more 

complex functions in a single unit.   

The introduction of programmable integrated circuits in the form of microprocessors in 70s 

completely transformed every facet of electronics. While fixed function integrated circuits 

and microprocessors coexisted for considerable time, the need to make the equipment 

smaller and portable lead to replacement of fixed function devices with programmable 

devices. With the all pervasive presence of the microprocessor and the increasing usage of 

other programmable circuits like PLDs (Programmable Logic devices), FPGAs (Field 

Programmable Gate Arrays) and ASICs (Application Specific Integrated Circuits), the very 

nature of digital systems is continuously changing. 

The central role of digital circuits in all our professional and personal lives makes it 

imperative that every electrical and electronics engineer acquire good knowledge of 

relevant basic concepts and ability to work with digital circuits. 

At present many of the undergraduate programmes offer two to four courses in the area of 

digital systems, with at least two of them being core courses.  The course under 

consideration constitutes the first course in the area of digital systems.  The rate of 

obsolescence of knowledge, design methods, and design tools is uncomfortably high.  Even 

the first level course in digital electronics is not exempt from this obsolescence.   

Any course in electronics should enable the students to design circuits to meet some stated 

requirements as encountered in real life situations. However, the design approaches should 

be based on a sound understanding of the underlying principles.  The basic feature of all 

design problems is that all of them admit multiple solutions.  The selection of the final 

solution depends on a variety of criteria that could include the size and cost of the substrate 

on which the components are assembled, the cost of components, manufacturability, 



 

reliability, speed etc.   

The course contents are designed to enable the students to design digital circuits of 

medium level of complexity taking the functional and hardware aspects in an integrated 

manner within the context of commercial and manufacturing constraints.  However, no 

compromises are made with regard to theoretical aspects of the subject.   

 

 



Learning Objectives 

Module 1: Number Systems and Codes (3) 

Number systems: Binary, octal, and hexa-decimal number systems, binary 

arithmetic.  Codes: Binary code, excess-3 code, gray code, error detection and 

correction codes.  

Recall 

1. Describe the format of numbers of different radices? 

2. What is parity of a given number? 

Comprehension 

1. Explain how a number with one radix is converted into a number with another 

radix. 

2. Summarize the advantages of using different number systems. 

3. Interpret the arithmetic operations of binary numbers. 

4. Explain the usefulness of different coding schemes. 

5. Explain how errors are detected and/or corrected using different codes. 

Application 

1. Convert a given number from one system to an equivalent number in another 

system. 

2. Illustrate the construction of a weighted code. 

Analysis: Nil 

Synthesis: Nil 

Evaluation: Nil 
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Numbers

We use numbers
� to communicate  
� to perform tasks
� to quantify
� to measure 

� Numbers have become symbols of the present era 
� Many consider what is not expressible in terms of 

numbers is not worth knowing
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Number Systems in use

Symbolic number system 
� uses Roman numerals (I = 1, V = 5, X = 10, L = 50, 

C = 100, D = 500 and M = 1000)
� still used in some watches
Weighted position system
� Decimal system is the most commonly used
� Decimal numbers are based on Indian numerals
� Radix used is 10



December 2006 N.J. Rao     M1L1 4

Other weighted position systems

� Advent of electronic devices with two states created a 
possibility of working with binary numbers

� Binary numbers are most extensively used
� Binary system uses radix 2
� Octal system uses radix 8
� Hexa-decimal system uses radix 16
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Weighted Position Number System

� Value associated with a digit is dependent on its position
� The value of a number is weighted sum of its digits  

2357 = 2  x 103 + 3 x 102 + 5 x 101 + 7 x 100

� Decimal point allows negative and positive powers of 10 
526.47  = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1

+ 7 x 10-2

� 10 is called the base or radix of the number system
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General positional number system

� Any integer > 2 can serve as the radix
� Digit position �i� has weight ri.  
� The general form of a number is

dp-1 dp-2, .... d1, d0 . d-1d-2 .... d-n

p digits to the left of the point (radix point) and n digits to 
the right of the point
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General positional number system (2)

� The value of the number is 

D =

� Leading and trailing zeros have no values  
� The values dis can take are limited by the radix value
� A number like (357)5 is incorrect






1p

ni
i

ird
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Binary Number System

� Uses 2 as its radix 
� Has only two numerals, 0 and 1 
Example:  

(N)2 = (11100110)2

� It is an eight digit binary number  
� The binary digits are also known as bits
� (N)2 is an 8-bit number
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Binary numbers to Decimal Number

(N)2 = (11100110)2

Its decimal value is given by,
(N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23

+ 1 x 22 + 1 x 21 + 0 x 20

= 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0   =   (230)10 
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Binary fractional number to 
Decimal number

� A binary fractional number (N)2 = 101.101  
� Its decimal value is given by

(N)2 = 1 x 22 + 0 x 21 + 1 x 20

+ 1 x 2-1 + 0 x 2-2 + 1 x 2-3

= 4 + 0 + 1 +     + 0 +  
= 5 + 0.5 + 0.125 = (5.625)10

1
2

1
8

1
8
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Some features of Binary Numbers

� Require very long strings of 1s and 0s
� Some simplification can be done through grouping
� 3-bit groupings: Octal (radix 8) groups three binary digits 

Digits will have one of the eight values 0, 1, 2, 3, 4, 5, 6 
and 7

� 4-digit groupings: Hexa-decimal (radix 16)
Digits will have one of the sixteen values 0 through 15.  
Decimal values from 10 to 15 are designated as A (=10),   
B (=11), C (=12), D (=13), E (=14) and F (=15) 
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Conversion of binary numbers

Conversion to an octal number 
� Group the binary digits into groups of three 
� (11011001)2 = (011) (011) (001) = (331)8

� Conversion to an hexa-decimal number
� Group the binary digits into groups of four 
� (11011001)2 = (1101) (1001) = (D9)16
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Changing the radix of numbers

� Conversion requires, sometimes, arithmetic operations
� The decimal equivalent value of a number in any radix 

D = 

Examples
(331)8 = 3 x 82 + 3 x 81 + 1 x 80 = 192 + 24 + 1 = (217)10

(D9)16 =  13 x 161 + 9 x 160 = 208 + 9  = (217)10

(33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2  = (27.69875)10

(E5.A)16 = 14 x 161 + 5 x 160 + 10 x 16-1 = (304.625)10





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Conversion of decimal numbers to 
numbers with radix r

Represent a number with radix r as
D = ((... ((dn-1).r + dn-2) r + ....).r + d1).r + d0

To convert a number with radix r to a decimal number
 Divide the right hand side by r
 Remainder: d0

 Quotient: Q = ((... ((dn-1).r + dn-2) r + ....).r + d1

 Division of Q by r gives d1 as the remainder 
 so on
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Example of Conversion

Quotient Remainder

156 ÷ 2 78 0
78 ÷ 2 39 0
39 ÷ 2 19 1
19 ÷ 2 9 1
9 ÷ 2 4 1
4 ÷ 2 2 0
2 ÷ 2 1              0
1 ÷ 2 0 1

(156)10 = (10011100)2
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Example of Conversion

Quotient Remainder
678 ÷ 8 84  6
84 ÷ 8 10 4
10 ÷ 8 1 2
1 ÷ 8 0 1

(678)10 = (1246)8

Quotient Remainder
678 ÷ 16 42 6
42 ÷ 16 2 A
2 ÷ 16 0 2

(678)10 = (2A6)16
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Negative Numbers

Sign-Magnitude representation 
 �+� sign before a number indicates it as a positive 

number 
 �-� sign before a number indicates it as a negative 

number
 Not very convenient on computers

� Replace �+� sign by �0� and �-� by �1�
(+1100101)2  (01100101)2

(+101.001)2  (0101.001)2

(-10010)2  (110010)2

(-110.101)2 --.  (1110.101)2
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Representing signed numbers

� Diminished Radix Complement (DRC) or 
(r-1) - complement 

� Radix Complement (RXC) or r-complement
Binary numbers
� DRC is known as �one�s-complement�
� RXC is known as �two�s-complement�
Decimal numbers
� DRC is known as 9�s-complement 
� RXC is known as 10�s-complement 
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One�s Complement Representation

The most significant bit (MSD) represents the sign  
If MSD is a �0�

 The number is positive 
 Remaining (n-1) bits directly indicate the magnitude

If the MSD is �1�
 The number is negative
 Complement of all the remaining (n-1) bits gives the 

magnitude
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Example: One�s complement

1111001 (1)(111001)

� First (sign) bit is 1:  The number is negative
� Ones� Complement of  111001  000110 

 (6)10
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Range of n-bit numbers

One�s complement numbers:
0111111 + 63
0000110 --> +   6
0000000 --> +   0
1111111 --> +   0
1111001 --> - 6
1000000 --> - 63

� �0� is represented by 000.....0 and 111.....1
� 7- bit number covers the range from +63 to -63.  
� n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1)
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One�s complement of a number

Complement all the digits
� If A is an integer in one�s complement form, then

one�s complement of A  =  -A
� This applies to fractions as well.  

A = 0.101 (+0.625)10

One�s complement of A = 1.010, (-0.625)10

Mixed number
B = 010011.0101 (+19.3125)10

One�s complement of B = 101100.1010 (- 19.3125)10
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Two�s Complement Representation

If MSD is a �0�
 The number is positive 
 Remaining (n-1) bits directly indicate the magnitude

If the MSD is �1�
 The number is negative
 Magnitude is obtained by complementing all the 

remaining (n-1) bits and adding a 1
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Example: Two�s complement

1111010 (1)(111010)
� First (sign) bit is 1:  The number is negative
� Complement 111010 and add 1 000101 + 1 

= 000110 = (6)10
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Range of n-bit numbers

Two�s complement numbers:
0111111 +  63
0000110 +    6
0000000 +    0
1111010 - 6
1000001 - 63
1000000 - 64

� �0� is represented by 000.....0 
� 7- bit number covers the range from +63 to -64.  
� n-bit number has a range from +(2n-1 - 1) to -(2n-1)
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Two�s complement of a number

Complement all the digits and add �1� to the LSB
If A is an integer in one�s complement form, then

 Two�s complement of A  =  -A
This applies to fractions as well  

 A = 0.101 (+0.625)10
 Two�s complement of A = 1.011 (-0.625)10

Mixed number
 B = 010011.0101 (+19.3125)10

 Two�s complement of B = 101100.1011 (- 9.3125)10



Number Systems 

We all use numbers to communicate and perform several tasks in our daily lives.  

Our present day world is characterized by measurements and numbers associated 

with everything.  In fact, many consider if we cannot express something in terms of 

numbers is not worth knowing.  While this is an extreme view that is difficult to 

justify, there is no doubt that quantification and measurement, and consequently 

usage of numbers, are desirable whenever possible.  Manipulation of numbers is one 

of the early skills that the present day child is trained to acquire.  The present day 

technology and the way of life require the usage of several number systems.  Usage 

of decimal numbers starts very early in one’s life. Therefore, when one is confronted 

with number systems other than decimal, some time during the high-school years, it 

calls for a fundamental change in one’s framework of thinking. 

There have been two types of numbering systems in use through out the world.   

One type is symbolic in nature.  Most important example of this symbolic numbering 

system is the one based on Roman numerals  

I = 1, V = 5, X = 10, L = 50, C = 100, D = 500 and M = 1000   

IIMVII - 2007 

While this system was in use for several centuries in Europe it is completely 

superseded by the weighted-position system based on Indian numerals.  The Roman 

number system is still used in some places like watches and release dates of movies.   

The weighted-positional system based on the use of radix 10 is the most commonly 

used numbering system in most of the transactions and activities of today’s world.  

However, the advent of computers and the convenience of using devices that have 

two well defined states brought the binary system, using the radix 2, into extensive 

use.  The use of binary number system in the field of computers and electronics also 

lead to the use of octal (based on radix 8) and hex-decimal system (based on radix 

16).  The usage of binary numbers at various levels has become so essential that it 

is also necessary to have a good understanding of all the binary arithmetic 

operations. 

Here we explore the weighted-position number systems and conversion from one 

system to the other.  

    



Weighted-Position Number System 

In a weighted-position numbering system using Indian numerals the value 

associated with a digit is dependent on its position. The value of a number is 

weighted sum of its digits.   

Consider the decimal number 2357.  It can be expressed as 

 2357 = 2  x 103 + 3 x 102 + 5 x 101 + 7 x 100 

Each weight is a power of 10 corresponding to the digit’s position.  A decimal point 

allows negative as well as positive powers of 10 to be used; 

 526.47  = 5 x 102 +2 x 101 + 6 x 100 + 4 x 10-1 + 7 x 10-2 

Here, 10 is called the base or radix of the number system.  In a general positional 

number system, the radix may be any integer r > 2, and a digit position i has weight 

ri.  The general form of a number in such a system is 

 dp-1 dp-2, .... d1, d0 . d-1d-2 .... d-n 

where there are p digits to the left of the point (called radix point) and n digits to the 

right of the point.  The value of the number is the sum of each digit multiplied by the 

corresponding power of the radix. 

 D = ∑
−
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Except for possible leading and trailing zeros, the representation of a number in 

positional system is unique (00256.230 is the same as 256.23).  Obviously the 

values di’s can take are limited by the radix value.  For example a number like 

(356)5, where the suffix 5 represents the radix will be incorrect, as there can not be 

a digit like 5 or 6 in a weighted position number system with radix 5. 

If the radix point is not shown in the number, then it is assumed to be located near 

the last right digit to its immediate right.  The symbol used for the radix point is a 

point (.). However, a comma is used in some countries.  For example 7,6 is used, 

instead of 7.6, to represent a number having seven as its integer component and six 

as its fractional.  

As much of the present day electronic hardware is dependent on devices that work 

reliably in two well defined states, a numbering system using 2 as its radix has 

become necessary and popular.  With the radix value of 2, the binary number system 



will have only two numerals, namely 0 and 1.   

Consider the number (N)2 = (11100110)2.   

It is an eight digit binary number.  The binary digits are also known as bits.  

Consequently the above number would be referred to as an 8-bit number. Its 

decimal value is given by 

       (N)2 = 1 x 27 + 1 x 26 + 1 x 25 + 0 x 24 + 0 x 23 + 1 x 22 + 1 x 21 + 0 x 20 

    = 128 + 64 + 32 + 0 + 0 + 4 + 2 + 0   =   (230)10  

Consider a binary fractional number (N)2 = 101.101.   

Its decimal value is given by 

 (N)2 = 1 x 22 + 0 x 21 + 1 x 20 + 1 x 2-1 + 0 x 2-2 + 1 x 2-3 

         = 4 + 0 + 1 + 
1
2  + 0 + 

1
8   

         = 5 + 0.5 + 0.125 = (5.625)10 

From here on we consider any number without its radix specifically mentioned, as a 

decimal number.  

With the radix value of 2, the binary number system requires very long strings of 1s 

and 0s to represent a given number.  Some of the problems associated with handling 

large strings of binary digits may be eased by grouping them into three digits or four 

digits.  We can use the following groupings.  

 Octal (radix 8 to group three binary digits)  

 Hexadecimal (radix 16 to group four binary digits)  

In the octal number system the digits will have one of the following eight values 0, 1, 

2, 3, 4, 5, 6 and 7.   

In the hexadecimal system we have one of the sixteen values 0 through 15.  

However, the decimal values from 10 to 15 will be represented by alphabet A (=10), 

B (=11), C (=12), D (=13), E (=14) and F (=15).   

Conversion of a binary number to an octal number or a hexadecimal number is very 

simple, as it requires simple grouping of the binary digits into groups of three or 

four.  Consider the binary number 11011011.  It may be converted into octal or 

hexadecimal numbers as 

 (11011001)2 = (011) (011) (001) = (331)8 



            = (1101) (1001)       = (D9)16 

Note that adding a leading zero does not alter the value of the number.  Similarly for 

grouping the digits in the fractional part of a binary number, trailing zeros may be 

added without changing the value of the number. 



Number System Conversions 

In general, conversion between numbers with different radices cannot be done by 

simple substitutions.  Such conversions would involve arithmetic operations.  Let us 

work out procedures for converting a number in any radix to radix 10, and vice-

versa.  The decimal equivalent value of a number in any radix is given by the 

formula 

 D = ∑
−
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where r is the radix of the number and there are p digits to the left of the radix point 

and n digits to the right.  Decimal value of the number is determined by converting 

each digit of the number to its radix-10 equivalent and expanding the formula using 

radix-10 arithmetic.   

Some examples are: 

 (331)8    = 3 x 82 + 3 x 81 + 1 x 80   = 192 + 24 + 1    = (217)10 

 (D9)16    = 13 x 161 + 9 x 160    = 208 + 9    = (217)10 

 (33.56)8 = 3 x 81 + 3 x 80 + 5 x 8-1 + 6 x 8-2   = (27.69875)10 

 (E5.A)16  = 14 x 161 + 5 x 160 + 10 x 16-1   = (304.625)10 

The conversion formula can be rewritten as 

 D = ((... ((dn-1).r + dn-2) r + ....).r + d1).r + d0 

This forms the basis for converting a decimal number D to a number with radix r.  If 

we divide the right hand side of the above formula by r, the remainder will be d0, 

and the quotient will be 

 Q = ((... ((dn-1).r + dn-2) r + ....).r + d1 

Thus, d0 can be computed as the remainder of the long division of D by the radix r.  

As the quotient Q has the same form as D, another long division by r will give d1 as 

the remainder.  This process can continue to produce all the digits of the number 

with radix r.  Consider the following examples. 

   Quotient Remainder 

 156 ÷  2       78       0 

   78 ÷  2       39       0 



   39 ÷  2       19       1 

   19 ÷  2         9       1 

     9 ÷  2         4       1 

     4 ÷  2         2       0 

     2 ÷  2         1                0 

     1 ÷  2         0       1 

 (156)10 = (10011100)2 

   Quotient Remainder 

 678 ÷  8      84         6 

   84 ÷  8      10        4 

   10 ÷  8        1        2 

     1 ÷  8        0        1 

 (678)10 = (1246)8 

   Quotient Remainder 

 678 ÷  16      42        6 

   42 ÷  16       2        A 

    2  ÷  16       0        2 

 (678)10 = (2A6)16 

 



 

Representation of Negative Numbers 

In our traditional arithmetic we use the “+” sign before a number to indicate it as a 

positive number and a “-” sign to indicate it as a negative number.  We usually omit the 

sign before the number if it is positive.  This method of representation of numbers is 

called “sign-magnitude” representation.  But using “+” and “-” signs on a computer is 

not convenient, and it becomes necessary to have some other convention to represent 

the signed numbers.  We replace “+” sign with “0” and “-” with “1”.   These two symbols 

already exist in the binary system.  Consider the following examples: 

 (+1100101)2       (01100101)2 

 (+101.001)2      (0101.001)2 

 (-10010)2    (110010)2 

 (-110.101)2    (1110.101)2 

In the sign-magnitude representation of binary numbers the first digit is always treated 

separately.  Therefore, in working with the signed binary numbers in sign-magnitude 

form the leading zeros should not be ignored.  However, the leading zeros can be 

ignored after the sign bit is separated.  For example,  

 1000101.11 = - 101.11 

While the sign-magnitude representation of signed numbers appears to be natural 

extension of the traditional arithmetic, the arithmetic operations with signed numbers in 

this form are not that very convenient, either for implementation on the computer or for 

hardware implementation.  There are two other methods of representing signed 

numbers.   

 Diminished Radix Complement (DRC) or (r-1)-complement  

 Radix Complement (RX) or r-complement   

When the numbers are in binary form 

 Diminished Radix Complement will be known as “one’s-complement”  

 Radix complement will be known as “two’s-complement”.   

If this representation is extended to the decimal numbers they will be known as 9’s-

complement and 10’s-complement respectively. 

One’s Complement Representation 

Let A be an n-bit signed binary number in one’s complement form.   

The most significant bit represents the sign.  If it is a “0” the number is positive and if it 

is a “1” the number is negative.   



 

The remaining (n-1) bits represent the magnitude, but not necessarily as a simple 

weighted number.  

Consider the following one’s complement numbers and their decimal equivalents: 

 0111111  + 63 

 0000110 --> +   6 

 0000000 --> +    0 

 1111111 --> +    0 

 1111001 --> -     6 

 1000000 --> -   63 

There are two representations of “0”, namely 000.....0 and 111.....1.   

From these illustrations we observe  

 If the most significant bit (MSD) is zero the remaining (n-1) bits directly indicate 

the magnitude.   

 If the MSD is 1, the magnitude of the number is obtained by taking the 

complement of all the remaining (n-1) bits.   

For example consider one’s complement representation of -6 as given above.   

 Leaving the first bit ‘1’ for the sign, the remaining bits 111001 do not directly 

represent the magnitude of the number -6.   

 Take the complement of 111001, which becomes 000110 to determine the 

magnitude.  

In the example shown above a 7-bit number can cover the range from +63 to -63.  In 

general an n-bit number has a range from +(2n-1 - 1) to -(2n-1 - 1) with two 

representations for zero. 

The representation also suggests that if A is an integer in one’s complement form, then 

 one’s complement of A  =  -A 

One’s complement of a number is obtained by merely complementing all the digits.   

This relationship can be extended to fractions as well.   

For example if A = 0.101 (+0.625)10, then the one’s complement of A is 1.010, which is 

one’s complement representation of (-0.625)10.  Similarly consider the case of a mixed 

number. 

              A = 010011.0101 (+19.3125)10 

 One’s complement of A = 101100.1010 (- 19.3125)10 



 

This relationship can be used to determine one’s complement representation of negative 

decimal numbers. 

Example 1: What is one’s complement binary representation of decimal number -75? 

Decimal number 75 requires 7 bits to represent its magnitude in the binary form.  One 

additional bit is needed to represent the sign.  Therefore, 

 one’s complement representation of  75 =  01001011 

 one’s complement representation of -75 =  10110100 

Two’s Complement Representation  

Let A be an n-bit signed binary number in two’s complement form.   

 The most significant bit represents the sign.  If it is a “0”, the number is positive, 

and if it is “1” the number is negative.   

 The remaining (n-1) bits represent the magnitude, but not as a simple weighted 

number.   

Consider the following two’s complement numbers and their decimal equivalents: 

 0111111  +  63 

 0000110  +    6 

 0000000  +    0 

 1111010  -     6 

 1000001  -   63 

 1000000  -   64 

There is only one representation of “0”, namely 000....0.   

From these illustrations we observe  

If most significant bit (MSD) is zero the remaining (n-1) bits directly indicate the 

magnitude.   

If the MSD is 1, the magnitude of the number is obtained by taking the complement of 

all the remaining (n-1) bits and adding a 1.  

Consider the two’s complement representation of -6.   

 We assume we are representing it as a 7-bit number. 

 Leave the sign bit.  

 The remaining bits are 111010.  These have to be complemented (that is 

000101) and a 1 has to be added (that is 000101 + 1 = 000110 = 6).   



 

In the example shown above a 7-bit number can cover the range from +63 to -64.  In 

general an n-bit number has a range from + (2n-1 - 1) to - (2n-1) with one representation 

for zero. 

The representation also suggests that if A is an integer in two’s complement form, then 

 Two’s complement of A = -A 

Two’s complement of a number is obtained by complementing all the digits and adding 

‘1’ to the LSB.   

This relationship can be extended to fractions as well.   

If A = 0.101 (+0.625)10, then the two’s complement of A is 1.011, which is two’s 

complement representation of (-0.625)10.   

Similarly consider the case of a mixed number. 

              A = 010011.0101 (+19.3125)10 

 Two’s complement of A = 101100.1011 (- 19.3125)10 

This relationship can be used to determine two’s complement representation of negative 

decimal numbers. 

Example 2: What is two’s complement binary representation of decimal number -75? 

Decimal number 75 requires 7 bits to represent its magnitude in the binary form.  One 

additional bit is needed to represent the sign.  Therefore, 

 Two’s complement representation of 75  = 01001011 

 Two’s complement representation of -75 = 10110101 

 

 

 

 



 
 

M1L1: Number Systems 

Multiple Choice Questions 

1. Which number system is understood easily by the computer? 

(a) Binary  (b) Decimal  (c) Octal  (d) Hexadecimal 

2. How many symbols are used in the decimal number system?  

(a) 2 (b) 8       (c) 10  (d) 16 

3. How are number systems generally classified? 

a. Conditional or non conditional 

b. Positional or non positional 

c. Real or imaginary 

d. Literal or numerical 

4. What does (10)16 represent in decimal number system? 

(a) 10 (b) 0A  (c) 16  (d) 15 

5. How many bits have to be grouped together to convert the binary number to its 

corresponding octal number? 

(a) 2 (b) 3  (c) 4  (d) 5 

6. Which bit represents the sign bit in a signed number system? 

a. Left most bit 

b. Right most bit 

c. Left centre 

d. Right centre 

7. The ones complement of 1010 is 

(a) 1100  (b) 0101 (c) 0111 (d) 1011 

8. How many bits are required to cover the numbers from +63 to -63 in one’s 

complement representation? 

(a) 6  (b) 7  (c) 8  (d) 9 



M1L1: Number Systems 

Problems 

1. Perform the following number system conversions: 

 (a) 101101112 = ?10  (b)    567410 = ?2 

 (c) 100111002 = ?8  (d)    24538  = ?2 

 (e) 1111000102 = ?16 (f)   6893410 = ?2 

 (g) 10101.0012 = ?10  (h) 6FAB716 = ?10 

 (i)  11101.1012 = ?8  (j)   5623816 = ?2 

2. Convert the following hexadecimal numbers into binary and octal numbers 

 (a) 78AD  (b) DA643  (c) EDC8 

 (d) 3245  (e) 68912  (f) AF4D 

3. Convert the following octal numbers into binary and hexadecimal numbers 

 (a) 7643  (b) 2643  (c) 1034 

 (d) 3245  (e) 6712  (f) 7512 

4. Convert the following numbers into binary: 

 (a) 123610  (b) 234910  (c) 345.27510 

 (d) 45678  (e) 45.658  (f) 145.238 

 (g) ADF516  (h) AD.F316  (i) 12.DA16 

5. What is the range of unsigned decimal values that can be represented by 8 bits? 

6. What is the range of signed decimal values that can be represented by 8 bits? 

7. How many bits are required to represent decimal values ranging from 75 to -75? 

8. Represent each of the following values as a 6-bit signed binary number in one’s 
complement and two’s complement forms. 

 (a) 28       (b) -21   (c) -5      (d) -13      

9. Determine the decimal equivalent of two’s complement numbers given below: 

 (a) 1010101 (b) 0111011      (c) 11100010 
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Need for Coding

Information sent over a noisy channel is likely to be 
distorted

Information is coded to facilitate
 Efficient transmission
 Error detection
 Error correction
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Coding

� Coding is the process of altering the characteristics of 
information to make it more suitable for intended 
application

� Coding schemes depend on
 Security requirements
 Complexity of the medium of transmission
 Levels of error tolerated
 Need for standardization
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Decoding

� Decoding is the process of reconstructing source 
information from the received encoded information

� Decoding can be more complex than coding if there is no 
prior knowledge of coding schemes
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Bit combinations

Bit - a binary digit 0 or 1

Nibble - a group of four bits
Byte - a group of eight bits
Word - a group of sixteen bits; 

(Sometimes used to designate 32 bit or 64 bit 
groups of bits)
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Binary coding

Assign each item of information a unique combination of 1s 
and 0s
 n is the number of bits in the code word 
 x be the number of unique words

If  n = 1, then x = 2 (0, 1)
n = 2, then x = 4 (00, 01, 10, 11)
n = 3, then x = 8 (000,001,010 ...111)
n = j, then x = 2j
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Number of bits in a code word

x: number of elements to be coded binary coded format
x < 2j

or    j > log2x
> 3.32 log10x

j is the number of bits in a code word.
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Example: Coding of alphanumeric 
information

� Alphanumeric information: 26 alphabetic characters + 10 
decimals digits = 36 elements

j > 3.32 log1036
j > 5.16 bits

� Number of bits required for coding = 6
� Only 36 code words are used out of the 64 possible code 

words 
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Some codes for consideration

� Binary coded decimal codes
� Unit distance codes
� Error detection codes
� Alphanumeric codes
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Binary coded decimal codes

Simple Scheme
� Convert decimal number inputs into binary form
� Manipulate these binary numbers
� Convert resultant binary numbers back into decimal 

numbers
However, it
� requires more hardware 
� slows down the system



December 2006 N.J. Rao     M1L2 11

Binary coded decimal codes

� Encode each decimal symbol in a unique string of 0s 
and 1s

� Ten symbols require at least four bits to encode
� There are sixteen four-bit groups to select ten groups.  
� There can be 30 x 1010 (16C10.10!) possible codes 
� Most of these codes will not have any special properties
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Example of a BCD code

� Natural Binary Coded Decimal code (NBCD) 
� Consider the number (16.85)10

(16.85)10 = (0001 0110 . 1000 0101) NBCD
1         6         8       5

� NBCD code is used in calculators
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How do we select a coding scheme?

It should have some desirable properties
� ease of coding 
� ease in arithmetic operations 
� minimum use of hardware 
� error detection property 
� ability to prevent wrong output during transitions 
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Weighted Binary Coding

Decimal number (A)10

Encoded in the binary form as �a3 a2 a1 a0�
w3, w2, w1 and w0 are the weights selected for a given 
code

(A)10 = w3a3 + w2a2 + w1a1 +w0a0
The more popularly used codes have these weights as

w3   w2   w1   w0
8      4     2     1
2      4     2     1
8      4    -2    -1
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Binary codes for decimal numbers

1  1   1   11  1  1  11  0  0  19

1  0  0   01  1  1  01  0  0  08

1  0   0   11  1  0  10  1  1  17

1  0   1   01  1  0  00  1  1  06

1  0   1   11  0  1  10  1  0  15

0  1   0   00  1  0  0 0  1  0  04

0  1   0   10  0  1  10  0  1  13

0  1   1   00  0  1  00  0  1  02

0  1   1   10  0  0  10  0  0  11

0  0   0   0  0  0  0  00  0  0  00

Weights
8  4  -2  -1

Weights
2  4  2  1

Weight
8   4   2   1

Decimal digit
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Binary coded decimal numbers

� The unused six combinations are illegal
� They may be utilised for error detection purposes.
� Choice of weights in a BCD codes

1. Self-complementing codes
2. Reflective codes
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Self complementing codes

Logical complement of a coded number is also its 
arithmetic complement

Example: 2421 code 
Nine�s complement of (4)10 = (5)10

2421 code of (4)10 = 0100  
Complement 0f 0100 =  1011 = 2421 code for (5)10

= (9 - 4)10.  
A necessary condition: Sum of its weights should be 9. 
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Other self complementing codes

Excess-3 code (not weighted)
Add 0011 (3) to all the 8421 coded numbers

Another example is 631-1 weighted code
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Examples of self-complementary codes

1111110011009

1110110110118

1101101010107

1100100010016

1011100110005

0100011001114

0011011101103

0010010101012

0001001001001

0000001100110

2421
Code

631-1
Code

Excess-3
Code

Decimal
Digit
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Reflective code

� Imaged about the centre entries with one bit changed
Example
� 9�s complement of a reflected BCD code word is formed 

by changing only one of its bits
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Examples of reflective BCD codes

010110009

101110018

100110107

111110116

000111005

000001004

111000113

100000102

101000011

010000000

Code-BCode-ADecimal
Digit
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Unit Distance Codes

Adjacent codes differ only in one bit

� �Gray code� is the most popular example
� Some of the Gray codes have also the reflective 

properties
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3-bit and 4-bit Gray codes

1101-9

1100-8

01001007

01011016

01111115

01101104

00100103

00110112

00010011

00000000

4-bit Gray 
Code

3-bit Gray 
Code

Decimal  
Digit

1000-15

1001-14

1011-13

1010-12

1110-11

1111-10

4-bit Gray 
Code

3-bit Gray 
Code

Decimal  
Digit
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More examples of Unit Distance Codes

0010010000019

1010110000118

1011110101117

1111111111116

0111111010115

0011011010014

0001001010003

1001001111002

1000000101001

0000000000000

UDC-3UDC-2UDC-1Decimal
Digit
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3-bit simple binary coded shaft encoder

000111

110

101

100 011

010

001

0 0 1

Can lead to errors (001  011  010)
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Shaft encoder disk using 3-bit Gray code

 000 100 

101 

111 

110 010 

011 

001 

0 0 1 
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Constructing Gray Code

� The bits of Gray code words are numbered from right to 
left, from 0 to n-1.

� Bit i is 0 if bits i and i+1 of the corresponding binary code 
word are the same, else bit i is 1 

� When i+1 = n, bit n of the binary code word is considered 
to be 0

Example:  Consider the decimal number 68.
(68)10 =  (1000100)2

Binary code : 1  0   0    0    1    0    0
Gray code   :  1  1   0    0    1    1    0
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Convert a Gray coded number to a 
straight binary number

� Scan the Gray code word from left to right  
� All the bits of the binary code are the same as those of 

the Gray code until the first 1 is encountered, including 
the first 1

� 1�s are written until the next 1 is encountered, in which 
case a 0 is written.

� 0�s are written until the next 1 is encountered, in which 
case a 1 is written.

Examples 
Gray code  :  1   1    0    1    1    0
Binary code:  1   0    0    1    0    0
Gray code  :  1   0    0    0    1    0   1   1
Binary code:  1   1    1    1    0    0   1   0
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Alphanumeric Code (ASCII)

DELo-O?/USSI1111

~nN>.RSSO0111

}m]M=-GSCR1011

|l\L<,FSFF0011

{k[K;+ESCVT1101

zjZJ:*SUBLF0101

yiYI9)EMHT1001

xhXH8(CANBS0001

wgWG7,ETBBEL1110

vfVF6&SYNACK0110

ueUE5%NAKENQ1010

tdTD4$DC4EOT0010

scSC3#DC3ETX1100

rbRB2�DC2STX0100

qaQA1!DC1SOH1000

p�P@0SPDLENUL0000

111110101100011010001000

b7 b6 b5b1b2b3b4
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Other alphanumeric codes

� EBCDIC (Extended Binary Coded Decimal Interchange 
Code) 

� 12-bit Hollerith code 
are in use for some applications
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Error Detection and Correction

� Error rate cannot be reduced to zero
� We need a mechanism of correcting the errors that occur
� It is not always possible or may prove to be expensive
� It is necessary to know if an error occurred  
� If an occurrence of error is known, data may be 

retransmitted
� Data integrity is improved by encoding
� Encoding may be done for error correction or merely for 

error detection.
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Encoding for data integrity

� Add a special code bit to a data word
� It is called the �Parity Bit�
� Parity bit can be added on an �odd� or �even� basis
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Parity

Odd Parity
� The number of 1�s, including the parity bit, should be odd 

Example: S in ASCII code is 
(S) = (1010011)ASCII

S, when coded for odd parity, would be shown as 
(S) = (11010011)ASCII with odd parity

Even Parity
� The number of 1�s, including the parity bit, should be even

When S is encoded for even parity
(S) = (01010011) ASCII with even parity
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Error detection with parity bits

� If odd number of 1�s occur in the received data word 
coded for even parity then an error occurred

� Single or odd number bit errors can be detected
� Two or even number bit errors will not be detected 
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Error Correction

� Parity bit allows us only to detect the presence of one bit 
error in a group of bits

� It does not enable us to exactly locate the bit that 
changed

� Parity bit scheme can be extended to locate the faulty bit 
in a block of information
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Single error detecting and single error 
correcting coding scheme

Column parity bits

Row

Parity

bits
Information bits

The bits are conceptually arranged in a two-dimensional 
array, and parity bits are provided to check both the rows 
and the columns
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Parity-check block codes
Detect and correct more than one-bit errors
These are known as (n, k) codes
� They have r (= n - k) parity check bits, formed by linear 

operations on the k data bits
� R bits are  appended to each block of k bits to generate an 

n-bit code word
A (15, 11) code has r = 4 parity-check bits for every 11 data 
bits

� As r increases it should be possible to correct more and 
more errors

� With r = 1 error correction is not possible
� Long codes with a relatively large number of parity-check 

bits should provide better performance.
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Single-error correcting code

(7, 3) code
Data bits Code words

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 1 1 1
0 1 0 0 1 0 0 1 1 0
0 1 1 0 1 1 1 0 0 1
1 0 0 1 0 0 1 1 0 0
1 0 1 1 0 1 0 0 1 1
1 1 0 1 1 0 1 0 1 0
1 1 1 1 1 1 0 1 0 1

� Code words differ in at least three positions.  
� Any one error is correctable since the resultant code word will still be 

closer to the correct one
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Hamming distance

� Difference in the number of positions between any two 
code words 

� For two errors to be correctable, the Hamming distance 
d should be at least 5

� For t errors correctable, d > 2t+1 or t = [(d -1)/2]
[  ] refers to the integer less than or equal to x.
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Codes with different properties

Codes exit for
� correcting independently occurring errors
� correcting burst errors
� providing relatively error-free synchronization of binary 

data 
� etc.
Coding Theory is very important to communication systems.
It is a discipline by itself.



CODES: Introduction 

When we wish to send information over long distances unambiguously it becomes 

necessary to modify (encoding) the information into some form before sending, and 

convert (decode) at the receiving end to get back the original information.  This 

process of encoding and decoding is necessary because the channel through which 

the information is sent may distort the transmitted information. Much of the 

information is sent as numbers. While these numbers are created using simple 

weighted-positional numbering systems, they need to be encoded before 

transmission.  The modifications to numbers were based on changing the weights, 

but predominantly on some form of binary encoding.  There are several codes in use 

in the context of present day information technology, and more and more new codes 

are being generated to meet the new demands. 

Coding is the process of altering the characteristics of information to make 

it more suitable for intended application 

By assigning each item of information a unique combination of 1s and 0s we 

transform some given information into binary coded form. The bit combinations are 

referred to as “words” or “code words”. In the field of digital systems and computers 

different bit combinations have different designations. 

 Bit  - a binary digit 0 or 1 

 Nibble - a group of four bits 

 Byte  - a group of eight bits 

 Word  - a group of sixteen bits;  

    a word has two bytes or four nibbles 

Sometimes ‘word’ is used to designate a larger group of bits also, for example 32 bit 

or 64 bit words. 

We need and use coding of information for a variety of reasons  

 to increase efficiency of transmission,  

 to make it error free,  

 to enable us to correct it if errors occurred,  

 to inform the sender if an error occurred in the received information etc.  



 for security reasons to limit the accessibility of information 

 to standardise a universal code that can be used by all 

Coding schemes have to be designed to suit the security requirements and the 

complexity of the medium over which information is transmitted.  

Decoding is the process of reconstructing source information from the 

encoded information.  Decoding process can be more complex than coding if we 

do not have prior knowledge of coding schemes.  

In view of the modern day requirements of efficient, error free and secure 

information transmission coding theory is an extremely important subject. However, 

at this stage of learning digital systems we confine ourselves to familiarising with a 

few commonly used codes and their properties.  

We will be mainly concerned with binary codes. In binary coding we use binary digits 

or bits (0 and 1) to code the elements of an information set. Let n be the number of 

bits in the code word and x be the number of unique words.  

 If n = 1, then x = 2 (0, 1) 

    n = 2, then x = 4 (00, 01, 10, 11) 

    n = 3, then x = 8 (000,001,010 ...111) 

      .    

    n = j, then x = 2j 

From this we can conclude that if we are given elements of information to code into 

binary coded format,  

 x < 2j 

     or    j > log2x 

              > 3.32 log10x 

where j is the number of bits in a code word. 

For example, if we want to code alphanumeric information (26 alphabetic characters 

+ 10 decimals digits = 36 elements of information), we require  

  j > 3.32 log1036 

  j > 5.16 bits 



Since bits are not defined as fractional parts, we take j = 6. In other words a 

minimum six-bit code would be required to code 36 alphanumeric elements of 

information.  However, with a six-bit code only 36 code words are used out of the 64 

code words possible. 

In this Learning Unit we consider a few commonly used codes including 

1. Binary coded decimal codes 

2. Unit distance codes 

3. Error detection codes 

4. Alphanumeric codes  

 



Binary Coded Decimal Codes 

The main motivation for binary number system is that there are only two elements in 

the binary set, namely 0 and 1.  While it is advantageous to perform all 

computations on hardware in binary forms, human beings still prefer to work with 

decimal numbers.  Any electronic system should then be able to accept decimal 

numbers, and make its output available in the decimal form.  

One method, therefore, would be to 

 convert decimal number inputs into binary form 

 manipulate these binary numbers as per the required functions, and  

 convert the resultant binary numbers into the decimal form   

However, this kind of conversion requires more hardware, and in some cases 

considerably slows down the system.  Faster systems can afford the additional 

circuitry, but the delays associated with the conversions would not be acceptable.  In 

case of smaller systems, the speed may not be the main criterion, but the additional 

circuitry may make the system more expensive.   

We can solve this problem by encoding decimal numbers as binary strings, and use 

them for subsequent manipulations.   

There are ten different symbols in the decimal number system: 0, 1, 2, . . ., 9.  As 

there are ten symbols we require at least four bits to represent them in the binary 

form. Such a representation of decimal numbers is called binary coding of decimal 

numbers. 

As four bits are required to encode one decimal digit, there are sixteen four-bit 

groups to select ten groups.  This would lead to nearly 30 x 1010 (16C10.10!) possible 

codes.  However, most of them will not have any special properties that would be 

useful in hardware design.  We wish to choose codes that have some desirable 

properties like  

 ease of coding  

 ease in arithmetic operations  

 minimum use of hardware  

 error detection property 

 ability to prevent wrong output during transitions   



In a weighted code the decimal value of a code is the algebraic sum of the weights 

of 1s appearing in the number.  Let (A)10 be a decimal number encoded in the binary 

form as a3a2a1a0. Then 

 (A)10 = w3a3 + w2a2 + w1a1 +w0a0 

where w3, w2, w1 and w0 are the weights selected for a given code, and a3,a2,a1and 

a0 are either 0s or 1s.  The more popularly used codes have the weights as 

  w3   w2   w1   w0 

  8      4     2     1 

  2      4     2     1 

  8      4    -2    -1 

The decimal numbers in these three codes are  

Decimal 
digit 

Weights 
8   4   2   1 

Weights 
2  4  2  1 

Weights 
8  4  -2  -1 

0 0   0   0   0 0  0  0  0 0  0   0   0    
1 0   0   0   1 0  0  0  1 0  1   1   1 
2 0   0   1   0 0  0  1  0 0  1   1   0 
3 0   0   1   1 0  0  1  1 0  1   0   1 
4 0   1   0   0 0  1  0  0  0  1   0   0 
5 0   1   0   1 1  0  1  1 1  0   1   1 
6 0   1   1   0 1  1  0  0 1  0   1   0 
7 0   1   1   1 1  1  0  1 1  0   0   1 
8 1   0   0   0 1  1  1  0 1  0   0   0 
9 1   0   0   1 1  1  1  1 1  1   1   1 

 

In all the cases only ten combinations are utilized to represent the decimal digits. 

The remaining six combinations are illegal.  However, they may be utilized for error 

detection purposes. 

Consider, for example, the representation of the decimal number 16.85 in Natural 

Binary Coded Decimal code (NBCD) 

 (16.85)10 = (0001  0110 . 1000  0101)NBCD 

            1         6         8       5 

There are many possible weights to write a number in BCD code.  Some codes have 

desirable properties, which make them suitable for specific applications.  Two such 

desirable properties are: 

 1. Self-complementing codes 



 2. Reflective codes 

When we perform arithmetic operations, it is often required to take the 

“complement” of a given number.  If the logical complement of a coded number is 

also its arithmetic complement, it will be convenient from hardware point of view.  In 

a self-complementing coded decimal number, (A)10, if the individual bits of a 

number are complemented it will result in (9 - A)10.   

Example: Consider the 2421 code.   

 The 2421 code of (4)10 is 0100.   

 Its complement is 1011 which is 2421 code for (5)10 = (9 - 4)10.   

Therefore, 2421 code may be considered as a self-complementing code. A necessary 

condition for a self-complimenting code is that the sum of its weights should be 9. 

A self-complementing code, which is not weighted, is excess-3 code.  It is derived 

from 8421 code by adding 0011 to all the 8421 coded numbers.   

Another self-complementing code is 631-1 weighted code.  

Three self-complementing codes are  

Decimal 
Digit 

Excess-3 
Code 

631-1 
Code 

2421 
Code 

0 0011 0011 0000 

1 0100 0010 0001 

2 0101 0101 0010 

3 0110 0111 0011 

4 0111 0110 0100 

5 1000 1001 1011 

6 1001 1000 1100 

7 1010 1010 1101 

8 1011 1101 1110 

9 1100 1100 1111 

 

A reflective code is characterized by the fact that it is imaged about the centre 

entries with one bit changed. For example, the 9’s complement of a reflected BCD 

code word is formed by changing only one its bits.  Two such examples of reflective 

BCD codes are 

  



Decimal Code-A Code-B 
0 0000 0100 
1 0001 1010 
2 0010 1000 
3 0011 1110 
4 0100 0000 
5 1100 0001 
6 1011 1111 
7 1010 1001 
8 1001 1011 
9 1000 0101 

 

The BCD codes are widely used and the reader should become familiar with reasons 

for using them and their application.  The most common application of NBCD codes is 

in the calculator. 

 



Unit Distance Codes 

There are many applications in which it is desirable to have a code in which the 

adjacent codes differ only in one bit.  Such codes are called Unit distance Codes.  

“Gray code” is the most popular example of unit distance code.  The 3-bit and 4-bit 

Gray codes are 

Decimal 3-bit Gray 4-bit Gray 
0 000 0000 
1 001 0001 
2 011 0011 
3 010 0010 
4 110 0110 
5 111 0111 
6 101 0101 
7 100 0100 
8 - 1100 
9 - 1101 
10 - 1111 
11 - 1110 
12 - 1010 
13 - 1011 
14 - 1001 
15 - 1000 

 

These Gray codes listed here have also the reflective properties.  Some additional 

examples of unit distance codes are  

Decimal 
Digit 

UDC-1 UDC-2 
 

UDC-3 
 

0 0000 0000 0000 
1 0100 0001 1000 
2 1100 0011 1001 
3 1000 0010 0001 

4 1001 0110 0011 
5 1011 1110 0111 
6 1111 1111 1111 
7 0111 1101 1011 
8 0011 1100 1010 
9 0001 0100 0010 

 

The most popular use of Gray codes is in the position sensing transducer known as 

shaft encoder.  A shaft encoder consists of a disk in which concentric circles have 

alternate sectors with reflective surfaces while the other sectors have non-reflective 



surfaces.  The position is sensed by the reflected light from a light emitting diode. 

However, there is choice in arranging the reflective and non-reflective sectors.  A 3-

bit binary coded disk will be as shown in the figure 1.  

 

 

 

 

 

 

FIG.1: 3-bit binary coded shaft encoder 

From this figure we see that straight binary code can lead to errors because of 

mechanical imperfections.  When the code is transiting from 001 to 010, a slight 

misalignment can cause a transient code of 011 to appear.  The electronic circuitry 

associated with the encoder will receive 001 --> 011 -> 010.  If the disk is patterned 

to give Gray code output, the possibilities of wrong transient codes will not arise.  

This is because the adjacent codes will differ in only one bit.  For example the 

adjacent code for 001 is 011.  Even if there is a mechanical imperfection, the 

transient code will be either 001 or 011. The shaft encoder using 3-bit Gray code is 

shown in the figure 2. 

    

 000100
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111

110 010

011

001

0 0 1

 

FIG. 2: Shaft encoder disk using a 3-bit Gray code 

There are two convenient methods to construct Gray code with any number of 

desired bits.  The first method is based on the fact that Gray code is also a reflective 

code.  The following rule may be used to construct Gray code: 

 A one-bit Gray code had code words, 0 and 1 

000111

110

101

100 011

010

001

0 0 1



 The first 2n code words of an (n+1)-bit Gray code equal the code words of an 

n-bit Gray code, written in order with a leading 0 appended. 

 The last 2n code words of a (n+1)-bit Gray code equal the code words of an 

n-bit Gray code, written in reverse order with a leading 1 appended. 

However, this method requires Gray codes with all bit lengths less than ‘n’ also be 

generated as a part of generating n-bit Gray code.  The second method allows us to 

derive an n-bit Gray code word directly from the corresponding n-bit binary code 

word: 

 The bits of an n-bit binary code or Gray code words are numbered from right 

to left, from 0 to n-1. 

 Bit i of a Gray-code word is 0 if bits i and i+1 of the corresponding binary 

code word are the same, else bit i is 1.  When i+1 = n, bit n of the binary 

code word is considered to be 0. 

Example:  Consider the decimal number 68. 

 (68)10 =  (1000100)2 

 Binary code: 1  0   0    0    1    0    0  

 Gray code  : 1  1   0    0    1    1    0 

The following rules can be followed to convert a Gray coded number to a straight 

binary number: 

 Scan the Gray code word from left to right.  All the bits of the binary code are 

the same as those of the Gray code until the first 1 is encountered, including 

the first 1. 

 1’s are written until the next 1 is encountered, in which case a 0 is      

written. 

 0’s are written until the next 1 is encountered, in which case a 1 is written. 

Consider the following examples of Gray code numbers converted to binary numbers 

 Gray code  :  1   1    0    1    1    0  1  0   0   0   1   0   1   1 

 Binary code:  1   0    0    1    0    0  1  1   1   1   0   0   1   0 

 



Alphanumeric Codes 

When information to be encoded includes entities other than numerical values, an 

expanded code is required.  For example, alphabetic characters (A, B, ....Z) and 

special operation symbols like +, -, /, *, (, ) and other special symbols are used in 

digital systems.  Codes that include alphabetic characters are commonly referred to 

as Alphanumeric Codes.  However, we require adequate number of bits to encode all 

the characters.  As there was a need for alphanumeric codes in a wide variety of 

applications in the early era of computers, like teletype, punched tape and punched 

cards, there has always been a need for evolving a standard for these codes.  

Alphanumeric keyboard has become ubiquitous with the popularization of personal 

computers and notebook computers.  These keyboards use ASCII (American 

Standard Code for Information Interchange) code 

b4 b3 b2 b1 b7 b6 b5 
    000 001 010 011 100 101 110 111 
0 0 0 0 NUL DLE SP 0 @ P ‘ p 
0 0 0 1 SOH DC1 ! 1 A Q a q 
0 0 1 0 STX DC2 “ 2 B R b r 
0 0 1 1 ETX DC3 # 3 C S c s 
0 1 0 0 EOT DC4 $ 4 D T d t 
0 1 0 1 ENQ NAK % 5 E U e u 
0 1 1 0 ACK SYN & 6 F V f v 
0 1 1 1 BEL ETB , 7 G W g w 
1 0 0 0 BS CAN ( 8 H X h x 
1 0 0 1 HT EM ) 9 I Y i y 
1 0 1 0 LF SUB * : J Z j z 
1 0 1 1 VT ESC + ; K [ k { 
1 1 0 0 FF FS , < L \ l | 
1 1 0 1 CR GS - = M ] m } 
1 1 1 0 SO RS . > N � n ~ 
1 1 1 1 SI US / ? O - o DEL 

 

Alphanumeric codes like EBCDIC (Extended Binary Coded Decimal Interchange Code) 

and 12-bit Hollerith code are in use for some applications.  However, ASCII code is 

now the standard code for most data communication networks.  Therefore, the 

reader is urged to become familiar with the ASCII code. 

 



    

Error Detection and Correcting Codes 

When data is transmitted in digital form from one place to another through a 

transmission channel/medium, some data bits may be lost or modified.  This loss of 

data integrity occurs due to a variety of electrical phenomena in the transmission 

channel.  As there are needs to transmit millions of bits per second, the data 

integrity should be very high. The error rate cannot be reduced to zero. Then we 

would like to ideally have a mechanism of correcting the errors that occur.  If this is 

not possible or proves to be expensive, we would like to know if an error occurred.  

If an occurrence of error is known, appropriate action, like retransmitting the data, 

can be taken.  One of the methods of improving data integrity is to encode the data 

in a suitable manner.  This encoding may be done for error correction or merely for 

error detection. 

A simple process of adding a special code bit to a data word can improve its 

integrity.  This extra bit will allow detection of a single error in a given code word in 

which it is used, and is called the ‘Parity Bit’.  This parity bit can be added on an odd 

or even basis.  The odd or even designation of a code word may be determined by 

actual number of 1’s in the data (including the added parity bit) to which the parity 

bit is added.  For example, the S in ASCII code is  

   (S) = (1010011)ASCII 

S, when coded for odd parity, would be shown as  

   (S) = (11010011)ASCII with odd parity 

In this encoded ‘S’ the number of 1’s is five, which is odd.   

When S is encoded for even parity 

   (S) = (01010011)ASCII with even parity. 

In this case the coded word has even number (four) of ones.   

Thus the parity encoding scheme is a simple one and requires only one extra bit.  If 

the system is using even parity and we find odd number of ones in the received data 

word we know that an error has occurred.  However, this scheme is meaningful only 

for single errors.  If two bits in a data word were received incorrectly the parity bit 

scheme will not detect the faults.  Then the question arises as to the level of 

improvement in the data integrity if occurrence of only one bit error is detectable.  

The improvement in the reliability can be mathematically determined. 



    

Adding a parity bit allows us only to detect the presence of one bit error in a group of 

bits.  But it does not enable us to exactly locate the bit that changed.  Therefore, 

addition of one parity bit may be called an error detecting coding scheme.  In a 

digital system detection of error alone is not sufficient.  It has to be corrected as 

well.  Parity bit scheme can be extended to locate the faulty bit in a block of 

information.  The information bits are conceptually arranged in a two-dimensional 

array, and parity bits are provided to check both the rows and the columns. 

If we can identify the code word that has an error with the parity bit, and the column 

in which that error occurs by a way of change in the column parity bit, we can both 

detect and correct the wrong bit of information.  Hence such a scheme is single error 

detecting and single error correcting coding scheme. 

This method of using parity bits can be generalized for detecting and correcting more 

than one-bit error.  Such codes are called parity-check block codes.  In this class 

known as (n, k) codes, r (= n-k) parity check bits, formed by linear operations on 

the k data bits, are appended to each block of k bits to generate an n-bit code word.  

An encoder outputs a unique n-bit code word for each of the 2k possible input k-bit 

blocks.  For example a (15, 11) code has r = 4 parity-check bits for every 11 data 

bits.  As r increases it should be possible to correct more and more errors.   

With r = 1 error correction is not possible, as such a code will only detect an odd 

number of errors.   

It can also be established that as k increases the overall probability of error should 

also decrease.  Long codes with a relatively large number of parity-check bits should 

thus provide better performance.  Consider the case of (7, 3) code 

  Data bits  Code words 

     0 0 0  0 0 0 0 0 0 0 

     0 0 1  0 0 1 1 1 1 1 

     0 1 0  0 1 0 0 1 1 0 

      0 1 1  0 1 1 1 0 0 1 

     1 0 0  1 0 0 1 1 0 0 

     1 0 1  1 0 1 0 0 1 1 

     1 1 0  1 1 0 1 0 1 0 

     1 1 1  1 1 1 0 1 0 1 



    

A close look at these indicates that they differ in at least three positions.  Any one 

error should then be correctable since the resultant code word will still be closer to 

the correct one, in the sense of the number of bit positions in which they agree, than 

to any other.  This is an example of single-error-correcting-code.  The difference in 

the number of positions between any two code words is called the Hamming 

distance, named after R.W.Hamming who, in 1950, described a general method for 

constructing codes with a minimum distance of 3.  The Hamming distance plays a 

key role in assessing the error-correcting capability of codes.  For two errors to be 

correctable, the Hamming distance d should be at least 5.  In general, for t errors to 

be correctable, d > 2t+1 or t = [(d-1)/2], where the [x] notation refers to the 

integer less than or equal to x. 

Innumerable varieties of codes exist, with different properties.  There are various 

types of codes for correcting independently occurring errors, for correcting burst 

errors, for providing relatively error-free synchronization of binary data etc.  The 

theory of these codes, methods of generating the codes and decoding the coded 

data, is a very important subject of communication systems, and need to be studied 

as a separate discipline. 



 
 

Problems 

M1L2: Codes 

1. Write the following decimal number in Excess-3, 2421, 84-2-2 BCD codes: 

 (a) 563      (b) 678        (c) 1465 
  
2. What is the use of self-complementing property?  Demonstrate 631-1 BCD code is 

self-complementary. 

3. Develop two different 4-bit unit distance codes. 

4. Prove that Gray code is both a reflective and unit distance code? 

5. Determine the Gray code for (a) 3710 and (b) 9710. 

6. Write your address in ASCII code. 

7. Write 8-bit ASCII code sequence of  the name of your town/city with even parity. 

8. (a) Write the following statements in ASCII 

   A = 4.5 x B 

   X = 75/Y 

 (b) Attach an even parity bit to each code word of the ASCII strings written for the 
above statements 

9. Find and correct the error in the following code sequence 

    0 1 0 1 0 
    0 1 1 0 0 
    1 1 0 1 1 
    1 0 1 1 0 
    1 0 0 0 1 
    0 0 0 1 1 
    1 1 0 0 0 
    0 1 0 0 1 
    0 1 0 1 0   --- Parity word 

    |__________  Parity bit 
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Switching Signals

We encounter situations where the choice is binary
Move -Stop
On - Off
Yes - No

� An intended action takes place or does not take place
� Signals with two possible states are called �switching 

signals�
� We need to work with a large number of such signals 
� There is a need for formal methods of handling such 

signals
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Examples of switching signals

A control circuit for an electric bulb

Four switches control the operation of the bulb
`the bulb is switched on if the switches S1 and S2 are              

closed, and S3 or S4 is also closed, otherwise the bulb will 
not be switched on'  
Relay operations in telephone exchanges is another example
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George Boole

English mathematician (1854)
Wrote �An Investigation of the Laws of Thought�
Examined the truth or falsehood of language statements 
Used special algebra of logic - Boole's Algebra (Boolean 

Algebra)
� assigned a value 1 to statements that are completely correct 
� assigned a value 0 to statements that are completely false
Statements are referred to digital variables
We consider logical or digital variables to be synonymous
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Claude Shannon

Master�s Thesis at Massachusetts Institute of Technology 
in 1938 
�A Symbolic Analysis of Relay and Switching Circuits�

� He applied Boolean algebra to the analysis and design 
of electrical switching circuits



December 2006 N.J. Rao     M2L1 6

Realisation of switching circuits

Bipolar and MOS transistors are used as switches in 
building integrated circuits

Need to understand the electrical aspects of these circuits
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Learning Objectives

� To know the basic axioms of Boolean algebra 

� To simplify logic functions (Boolean functions) 
using the basic properties of Boolean Algebra
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Boolean Algebra

A Boolean algebra consists of 
 a finite set BS 
 subject to equivalence relation "="
 one unary operator �not� (symbolised by an over bar)
 two binary operators "+" and "." 

such that for every element x and y  BS, the operations       
(not x), x + y and  x . y are uniquely definedx
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Boolean Algebra (2)

� The unary operator �not� is defined by the relation 

� The not operator is also called the complement 
is the complement of xx

10;01 
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Binary operator �and�

The �and� operator is defined by 

0 . 0 =  0

0 . 1 =  0
1 . 0 =  0

1 . 1 =  1
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Binary operator �or�

The �or� operator is defined by 

0 + 0 =  0
0 + 1 =  1

1 + 0 =  1
1 + 1 =  1
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Huntington's (1909) postulates

P1. The operations are closed   

For all x and y   BS,  
� x + y  BS          
� x . y   BS        

P2. For each operation there exists an identity element.

� There exists an element 0  BS such that for all    
x  BS, x + 0 = x          
� There exists an element 1  BS such that for all    

x  BS, x  . 1 = x 
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Huntington's postulates (2)

P3. The operations are commutative         

For all x and y  BS,          
� x + y = y + x           
� x . y  = y . x                    

P4. The operations are distributive     

For all x, y and z   BS,          
� x + (y . z) = (x + y) . (x + z)          
� x . (y + z) = (x . y) + (x . z) 
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Huntington's postulates (3)

P5. For every element x   BS there exists an element  
 BS  (called the complement of x) such that   

� x +       = 1       
� x .        = 0         

P6. There exist at least two elements x and y BS such 
that x      y. 

x
x

x


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Useful properties

dualityoflawtheapplyingbyprovedbecanbPart

)5bpostulate(0

)a2(postulatex.x

4b)postulate()x0(.x

5b)(postulate)x.(x0).(x

2a) (postulate0)0.x(0 .x :Proof

11xb.

00.xa.

 x allFor 

1 and 0 of law Special :1Property 















 BS
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Useful properties (2)

Property 2:
� The element 0 is unique.
� The element 1 is unique.
Proof for Part b by contradiction:   
Assume that there are two 1s denoted 11 and 12.  

x . 11 = x and y . 12 = y (Postulate 2b)
x . 11 = x and 12 . y = y (Postulate 3b)
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Useful properties (3)

Letting x = 12 and y = 11

12 . 11 = 12 and 12 . 11 = 11

11 = 12 (transitivity property)
which becomes a contradiction of initial assumption

Property �a� can be established by applying the principle of 
duality.
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Useful properties (3)

duality of principle ofn applicatio by the  validisbPart 

10

a)postulate5(100

000

2a) (postulatex0x:Proof

01 is1 ofcomplement Theb.

10is0ofcomplementThea.

3opertyPr















December 2006 N.J. Rao     M2L1 19

Useful properties (4)

duality)(byxx.x

2a) (postulate                 x                        

5b) (postulate0x

)4a(postulate)x.(xx

)5a(postulate)x(x.x)x(                

2b)(postulate           1 . x)(x  x   x:Proof

 x x  .  x b. 

 x x   x a.

BS  x allFor 



















Property 4: Idempotency law
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Useful properties (5)

    sexpression logical gsimplifyinin  Useful

duality)(by          x        )y (x  . y) (x       

2b) (postulate        x                                      

5a) (postulate           1 . x                               

4b) (postulate  )y (y  . x  y . x y  .  x :Proof

 x )y (x . y) (x   b.    

 x y . x y  .  x a.    

BS y  and x allFor 

lawAdjacency  :5operty Pr














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Useful properties (6)

Property 6: First law of absorption.  

For all x and y  BS,
x + (x . y) = x 
x . (x + y) = x

Proof : x . (x + y) = (x + 0) . (x + y)      (postulate 2a)          
= x + (0 . y)          (postulate 4a)       
= x + 0                 (property 2.1a)          
= x                       (postulate 2a)

x + (x . y) = x                       (by duality)
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Useful properties (7)

duality)(by             y          . x  y)  x( .   x           

2b) (postulate           y           x                             

5a) (postulate              y) (x  . 1                             

4a) (postulate    y) (x  . )x (x   y) . x(   x :Proof

y . x  y)  x( .  x b.         

y  x  y) . x(   x a.         

BS y  and x allFor 

absorption of law Second :7operty Pr














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Useful properties (8)

duality)(by  z)  x( . y) (x   z) (y  . z)  x( . y) (x 

2b) (postulate                              z . x y  . x            

b) 2.1 (postulate                        1 z. . x  1 y. . x            

4b) (postulate     y)  (1 . z . x  z) (1 .y  . x            

4b) (postulate  z .y  . x  z . x  z y. . x y  . x            

5a) (postulate       z .y  ).x (x   z . x y  . x            

2b) (postulate                z .y  1.  z . x y  . x            

z y.  z . x y  .   x :Proof

z)  x( . y) (x   z) (y  . z) . x( . y) (x   b.          

z . x y  . x  z .y   z . x y  .  x a.          

BS  z y,  x,allFor 

law Consensus :8Property 


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


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


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Useful properties (9)

For all x and y  BS, 
If (a)   x + y = y  and (b) x . y = y,   then x = y
Proof: Substituting (a) into the left-hand side of (b), we have

x . (x + y) = y
However by the first law of absorption 

x . (x + y) = x (property 6)
Therefore, by transitivity x = y
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Useful properties (10)

5a) (postulate x    . x  1 .  x) x(                

4a) (postulate    )x  x( .  x) x(                

5b) (postulate            )x .(x   x                

2a) (postulate                   0  x  x            

x  x . x and x    x) x(            

is, that holds, 2.9)(property identity  of 

law  that theshow  toneed  We:Proof

 x x   BS,  x allFor 

involution of law The :10Property 












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Useful properties (10) (contd.)

 x x have  weidentity, of law by the Therefore,

2a) (postulate            x        . x               

5b) (postualte             0  x . x               

5a) (postulate        x . x  x . x               

2b) (postulate         )x (x  . x               

1 . x  x    Also












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Useful properties (11)

duality)(by                        y  x   .yx                           

y  x of complement  theis )y . x( Therefore,

2.16)(property                              1                                    

5a) (postulate                       1  x                                    

2.7a)(property        y           y  x                                    

3a) (postulatey           )y . x (x   )y. x(  y) (x             

2a) (postulate                   0  0  0                                   

4b) (postulate )y . x .(y   )y . x .(x   )y . x( . y) (x  :Proof

y  x  y .x   b.       

y . x  y x   a.       

BS y   x,allFor 

Law  sDeMorgan' :11Property 






















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DeMorgan's law

� bridges the AND and OR operations
� establishes a method for converting one form of a 

Boolean function into another
� allows the formation of complements of expressions with 

more than one variable
� can be extended to expressions of any number of 

variables through substitution
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Example of DeMorgan�s Law

z . y . x                                   

law) sDeMorgan'(by       z y  . x                                   

on)substituti(by     z y  x    wx          Therefore

law) sDeMorgan'(by         w . x   w x                 Since

 w x  z y   then x  w, z y Let  

z . y . x  z y  x 












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Boolean Operators

BS = {0, 1}
Resulting Boolean algebra is more suited to working with 
switching circuits
Variables associated with electronic switching circuits 
take only one of the two possible values. 
The operations "+" and "." also need to be given 
appropriate meaning
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Binary Variables

Definition: A binary variable is one that can assume one 
of the two values 0 and 1.

These two values are meant to express two exactly 
opposite states. 
If  A      0, then A = 1.  
If  A      1, then A = 0 

Examples:
 if switch A is not open then it is closed   
 if switch A is not closed then it is open

Statement like 
"0 is less than 1" or " 1 is greater than 0� are invalid in 

Boolean algebra




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NOT Operator

� The Boolean operator NOT, also known as complement 
operator

� NOT operator is represented by "  " (overbar) on the 
variable, or " / " (a superscript slash) after the variable

Definition: Not operator is defined by
A A/

0 1      
1 0

� " / " symbol is preferred for convenience in typing and 
writing programs

� Circuit representation:
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OR Operator

Definition: The Boolean operator "+" known as OR operator 
is defined by

A B A+B
0 0 0
0 1 1
1 0 1
1 1 1

The circuit symbol for logical OR operation
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And Operator

� Definition: The Boolean operator "." known as AND 

operator is defined by

A B A.B
0 0 0
0 1 0
1 0 0
1 1 1

Circuit symbol for the logical AND operation
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Boolean Operators and Switching 
Circuits

Open      Closed

Closed  Open      

A                 A

1111

0101

0110

0000

A.BA+BBA
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Additional Boolean Operators
� NAND, 
� NOR, 
� Exclusive-OR (Ex-OR)
� Exclusive-NOR (Ex-NOR)  
Definitions

100011

010101

010110

101100

A   BA    B(A+B)/(AB)/BA 
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Additional Operations (2)

NAND operation is just the complement of AND operation 
NOR operation is the complement of OR operation
Exclusive-NOR is the complement of Exclusive-OR 

operation
Circuit Symbols 


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Functionally complete sets of 
operations

� OR, AND and NOT          
� OR and NOT          
� AND and NOT          
� NAND          
� NOR 



December 2006 N.J. Rao     M2L1 39

Completeness of AND, OR and NOT

A
B

NOR

A
B

NAND

A

B
EX-OR

A

B
EX-NOR
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Completeness of OR and NOT 
operations
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Completeness of AND and NOT

A

B
OR

A

B
NOR

A
B

NAND

A

B

EX-NOR

A

B

EX-OR
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Completeness of NAND
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Completeness of NOR

A

B
OR

A

B

AND

A

NOT

A

B
NAND

A
B

EX-NOR

A
B

EX-OR



          

WHAT IS BOOLEAN ALGEBRA? 

Consider the electrical circuit that controls the lighting of a bulb.   

      

   

Four switches control the operation of the bulb. The manner in which the operation of 

the bulb is controlled can be stated as 

The bulb switches on if the switches S1 and S2 are closed, and S3 or S4 is also 

closed, otherwise the bulb will not switch on 

From this statement one can make the following observations: 

• Any switch has two states: “closed”  or “open” 

• The bulb is switched on only when the switches are in some well defined 

combination of states. 

• The possible combinations are expressed through two types of relationships: 

“and” and “or”. 

• The two possible combinations are 

 “S1 and S2 and S3 are closed”  

 “S1 and S2 and S4 are closed” 

There are many situations of engineering interest where the variables take only a small 

number of possible values. 

Some examples: 

• Relay network used in telephone exchanges of earlier era 

• Testing through multiple choice questions 

• Mechanical display boards in airports and railway stations 

• Choices available at road junctions. 

Can you identify a situation of significance where the variables can take only a small 

number of distinctly defined states? 

How do we implement functions similar to the example shown above? We need devices 

that have finite number states. It seems to be easy to create devices with two well 

defined states.  It is more difficult and more expensive to create devices with more than 

two states.   



Let us consider devices with two well defined states.  We should also have the ability to 

switch the state of the device from one state to the other.  We call devices having two 

well defined states as “two-valued switching devices”. 

Some examples of devices with two states 

• A bipolar transistor in either fully-off or fully-on state 

• A MOS transistor in either fully off or fully on state 

• Simple relays 

• Electromechanical switch 

If we learn to work with two-valued variables, we acquire the ability to implement 

functions of such variables using two-state devices. We call them “binary variables”. 

Very complex functions can be represented using several binary variables.  As we can 

also build systems using millions of electronic two-state devices at very low costs, the 

mathematics of binary variables becomes very important. 

An English mathematician, George Boole, introduced the idea of examining the truth or 

falsehood of language statements through a special algebra of logic.  His work was 

published in 1854, in a book entitled “An Investigation of the Laws of Thought”.  Boole's 

algebra was applied to statements that are either completely correct or completely false.   

A value 1 is assigned to those statements that are completely correct and a value 0 is 

assigned to statements that are completely false. As these statements are given 

numerical values 1 or 0, they are referred to as digital variables.   

In our study of digital systems, we use the words switching variables, logical variables, 

and digital variables interchangeably. 

Boole's algebra is referred to as Boolean algebra. Originally Boolean algebra was mainly 

applied to establish the validity or falsehood of logical statements.  

In 1938, Claude Shannon of Department of Electrical Engineering at Massachusetts 

Institute of Technology in (his master's thesis) provided the first applications of the 

principles of Boolean algebra to the design of electrical switching circuits.   The title of 

the paper, which was an abstract of his thesis, is “A Symbolic Analysis of Relay and 

Switching Circuits”. Shannon established Boole's algebra to switching circuits is what 

ordinary algebra is to analogue circuits.   

Logic designers of today use Boolean algebra to functionally design a large variety of 

electronic equipment such as  

• hand-held calculators,  

• traffic light controllers,  



          

• personal computers,  

• super computers,  

• communication systems  

• aerospace equipment 

• etc. 

We next explore Boolean algebra at the axiomatic level. However, we do not worry about 

the devices that would be used to implement them and their limitations. 

 



Boolean Algebra and Huntington Postulates  

Any branch of mathematics starts with a set of self-evident statements known as 

postulates, axioms or maxims. These are stated without any proof.   

Boolean algebra is a specific instance of Algebra of Propositional Logic. 

E.V.Huntington presented basic postulates of Boolean Algebra in 1904 in his paper 

“Sets of Independent Postulates for the Algebra of Logic”. He defined a multi-valued 

Boolean algebra on a set of finite number of elements.  

In Boolean algebra as applied to the switching circuits, all variables and relations are 

two-valued. The two values are normally chosen as 0 and 1, with 0 representing 

false and 1 representing true. If x is a Boolean variable, then 

  x = 1 means x is true 

  x = 0 means x is false 

When we apply Boolean algebra to digital circuits we will find that the qualifications 

“asserted” and “not-asserted” are better names than “true” and “false”. That is when 

x = 1 we say x is asserted, and when x = 0 we say x is not-asserted. 

You are expected to be familiar with  

• Concept of a set  

• Meaning of equivalence relation  

• The principle of substitution  

Definition: A Boolean algebra consists of a finite set of elements BS subject to  

• Equivalence relation "=",  

• One unary operator “not” (symbolised by an over bar),  

• Two binary operators "." and "+",  

• For every element x and y ∈ BS the operations x  (not x), x.y and x +y are 

uniquely defined. 

The unary operator ‘not’ is defined by the relation  

 1= 0;  0 = 1 

The not operator is also called the complement, and consequently x  is the 

complement of x. 



The binary operator ‘and’ is symbolized by a dot. The ‘and’ operator is defined by the 

relations 

 0 . 0 =  0 

 0 . 1 =  0 

 1 . 0 =  0 

 1 . 1 =  1 

The binary operator ‘or’ is represented by a plus (+) sign.  The ‘or’ operator is 

defined by the relations 

 0 + 0 =  0 

 0 + 1 =  1 

 1 + 0 =  1 

 1 + 1 =  1 

Huntington's postulates apply to the Boolean operations 

P1.  The operations are closed.    

For all x and y  ∈ BS,   

a. x + y ∈  BS           

b. x . y ∈ BS         

P2.  For each operation there exists an identity element.           

a. There exists an element 0 ∈ BS such that for all x ∈ BS, x + 0 = x           

b. There exists an element 1 ∈ BS such that for all x ∈ BS, x . 1 = x          

P3. The operations are commutative.           

For all x and y ∈ BS,           

a. x + y = y + x            

b. x . y  = y . x                     

P4. The operations are distributive.      

For all x, y and z  ∈ BS,           

a.    x + (y . z) = (x + y) . (x + z)           

b.    x . (y + z) = (x . y) + (x . z)     

P5.  For every element x ∈ BS there exists an element x  ∈ BS (called the 

complement of x) such that   x + x  = 1 and x . x   = 0          

P6. There exist at least two elements x and y ∈ BS such that x ≠  y.      

 



Propositions from Huntington’s Postulates 

We derive several new propositions using the basic Huntington’s postulates.  

Through these propositions we will be able to explore the structures and implications 

of that branch of mathematics. Such propositions are called theorems. A theorem 

gives a relationship among the variables.  

Definition:  A Boolean expression is a constant, 1 or 0, a single Boolean variable or 

its complement, or several constants and/or   Boolean variables and/or their 

complements used in combination with one or more binary operators. 

According to this definition 0, 1, x and x  are Boolean expressions. If A and B are 

Boolean expressions, then A  , B , A+B and A.B are also Boolean expressions. 

Duality: Many of the Huntington’s postulates are given as pairs, and differ only by 

the simultaneous interchange of operators "+" and "." and the elements "0" and "1". 

This special property is called duality.  

The property of duality can be utilized effectively to establish many useful properties 

of Boolean algebra.  

The duality principle  

“If two expressions can be proven equivalent by applying a sequence of basic 

postulates, then the dual expressions can be proven equivalent by simply applying 

the sequence of dual postulates” 

This implies that for each Boolean property, which we establish, the dual property is 

also valid without needing additional proof. 

Let us derive some useful properties: 

Property 1: Special law of 0 and 1 

For all x ∈ BS,  

a. x . 0 = 0  

b. x + 1 = 1 

Proof: x . 0  = (x . 0) + 0           (postulate 2a)             

          = (x . 0) + (x . x )   (postulate 5b) 

           = x . (0 + x )          (postulate 4b) 

           = x . x                    (postulate 2a)             

           = 0                         (postulate 5b) 



Property: b can be proved by applying the law of duality, that is, by interchanging "." 

and "+", and "1" and "0". 

Property 2: 

a. The element 0 is unique. 

b. The element 1 is unique. 

Proof for Part b by contradiction: Let us assume that there are two 1s denoted 11 

and 12.  Postulate 2b states that 

          x. 11 = x and y. 12 = y 

Applying the postulate 3b on commutativity to the second relationship, we get 

           11 . x = x and 12 . y = y 

Letting x = 12 and y = 11, we obtain 

 11 . 12 = 12 and 12 . 11 = 11 

Using the transitivity property of any equivalence relationship we obtain 11 = 12, 

which becomes a contradiction of our initial assumption. 

Property a can be established by applying the principle of duality. 

Property 3 

a. The complement of 0 is 0  = 1. 

b. The complement of 1 is1 = 0. 

Proof:        x + 0  = x         (postulate 2a) 

      0 + 0  = 0         

      0 + 0  = 1         (postulate 5a)  

             0  = 1      

Part b is valid by the application of principle of duality. 

Property 4: Idempotency law 

For all x ∈ BS, 

a. x + x = x  

b. x . x  = x 

Proof:  x + x = (x + x) . 1          (postulate 2b)                  

                   = (x + x) . (x + x )      (postulate 5a)                  

          = x + (x . x )              (postulate 4a)                  

          = x + 0                      (postulate 5b)                  

                     = x                            (postulate 2a) 



             x . x = x                          (by duality)  

Property 5: Adjacency law   

For all x and y ∈ BS, 

a. x . y + x .  y     = x  

b. (x + y) . (x + y ) = x 

Proof:     x . y + x . y   = x . (y + y )  (postulate 4b)                 

   = x . 1              (postulate 5a)              

   = x                   (postulate 2b) 

          (x + y) . (x + y ) = x                (by duality) 

The adjacency law is very useful in simplifying logical expressions encountered in the 

design of digital circuits.  This property will be extensively used in later learning 

units. 

Property 6: First law of absorption  

For all x and y ∈ BS, 

a. x + (x . y) = x  

b. x . (x + y) = x 

Proof   x . (x + y) = (x + 0) . (x + y)   (postulate 2a)           

                 = x + (0 . y)           (postulate 4a)        

      = x + 0                  (property 2.1a)           

      = x                        (postulate 2a) 

           x + (x . y) = x                        (by duality) 

Property 7: Second law of absorption   

For all x and y ∈ BS, 

a.     x + ( x  . y) = x + y  

b.    x . ( x  + y) = x . y 

Proof: x + ( x  . y) = (x + x ) . (x + y)  (postulate 4a)         

       = 1. (x + y)             (postulate 5a)         

      = x + y                   (postulate 2b) 

          x . ( x  + y) = x . y                 (by duality) 

Property 8: Consensus law 

For all x, y and z ∈ BS, 

a. x . y + x  . z + y . z = x . y + x  . z            



b. (x + y) . ( x  + z) . (y + z) = (x + y) . ( x  + z) 

Proof:  x . y + x  . z + y . z             

     = x . y + x  . z + 1 . y . z   (postulate 2b)            

     = x . y + x  . z + (x + x ) . y . z  (postulate 5a)            

     = x . y + x . z + x . y . z + x . y . z    (postulate 4b)            

      = x . y + x . y . z + x  . z  + x  . y . z  (postulate 3a)            

     = x . y . (1 + z) + x  . z . ( 1 + y) (postulate 4b)   

                = x . y . 1 + x  . z . 1             (property 2.1b)  

      = x . y + x . z                      (postulate 2b) 

(x + y) . ( x  + z) . (y + z) = (x + y) . ( x  + z)   (by duality) 

Property 9: Law of identity 

For all x and y ε BS, if 

a.   x + y = y  

b.   x . y = y,   then  x = y 

Proof: Substituting (a) into the left-hand side of (b), we have 

          x . (x + y) = y 

However by the first law of absorption  

         x . (x + y) = x  (property 6) 

Therefore, by transitivity x = y 

Property 10: The law of involution   

For all x ∈ BS,  x = x 

Proof: We need to show that the law of identity (property 2.9) holds, that is, 

  ( x   + x) =  x   and    x   . x  =  x  

          x  =  0x +                     (postulate 2a) 

              = )x.x(x +    (postulate 5b) 

              =  )xx).(xx( ++      (postulate 4a) 

              =  1).xx( +               (postulate 5a) 



Thus x  =  xx +  

Also     x  =  1.x                     (postulate 2b) 

               =  )xx.(x +              (postulate 5a) 

               =  x.xx.x +              (postulate 4b) 

               =  0x.x +                 (postulate 5b)  

     =   x.x                     (postulate 2a) 

Therefore by the law of identity, we have xx =  

Property 11: DeMorgan's Law  

For all x, y ∈ BS, 

a.  yx +  =  y.x   

b. y.x    =  yx +  

Proof: )y.x(y.)y.x(x.)y.x).(yx( +=+   (postulate 4b) 

                  =  0 + 0      

                 =  0   (postulate 2a) 

        y)y.x(x)y.x(y)(x ++=++        (postulate 3a) 

          =  yyx ++    (property 2.7a) 

          =  x + 1   (postulate 5a) 

          =  1   (property 2.16) 

Therefore, ( x  . y ) is the complement of (x + y). 

            x.y   = yx +                     (by duality) 

DeMorgan's law bridges the AND and OR operations, and establishes a method for 

converting one form of a Boolean function into another.  More particularly it gives a 

method to form complements of expressions involving more than one variable. By 

employing the property of substitution, DeMorgan's law can be extended to 

expressions of any number of variables.  Consider the following example: 

   zyx ++   =   z.y.x  

Let y + z = w, then x + y + z = x + w. 

 wx +   =   w.x                  (by DeMorgan's law) 



wx +  = zyx ++      (by substitution)                                      

  = zy.x +   (by DeMorgan's law)   

                               = z.y.x                    (by DeMorgan's law) 

At the end of this Section the reader should remind himself that all the postulates 

and properties of Boolean algebra are valid when the number of elements in the BS 

is finite.   The case of the set BS having only two elements is of more interest here 

and in the topics that follow in this course on Design of Digital systems.   

All the identities derived in this Section are listed in the Table 1 to serve as a ready 

reference. 

TABLE: Useful Identities of Boolean Algebra 

Complementation   0xx. =            

                    1xx =+  

0 - 1    law            x.0  = 0     

   x+1 = 1                       

   x+0 = x  

                          x.1  = x 

Idempotency          x.x  = x     

   x+x = x 

Involution             xx =  

Commutative law   x . y  = y . x  

           X + y = y + x 

Associative law       (x . y).z = x. (y.z)    

        (x + y) + z = x + (y+z) 

Distributive law     x + (y.z) = (x+y).(x+z)    

        X . (y+z) = x.y +x.z  

Adjacency law      xyx.x.y =+   

                  xy)y).(x(x =++  

Absorption law    x + x . y   =  x     



       x . (x+y) =  x                          

                yx.yxx +=+             

          x.yy)xx.( =+  

Consensus law     .zxx.yy.z.zxx.y +=++  

                         z)xy).((xz)z).(yxy).((x ++=+++  

DeMorgan's law   y.xyx =+  

       yxx.y +=  

The properties of Boolean algebra when the set BS has two elements, namely 0 and 

1, will be explored next. 

 



 

 

BOOLEAN OPERATORS 

Recall that Boolean Algebra is defined over a set (BS) with finite number of elements. If 

the set BS is restricted to two elements {0, 1} then the Boolean variables can take only 

one of the two possible values.  As all switches take only two possible positions, for 

example ON and OFF, Boolean Algebra with two elements is more suited to working with 

switching circuits.  In all the switching circuits encountered in electronics, the variables 

take only one of the two possible values.  

Definition:  A binary variable is one that can assume one of the two values, 0 or 1. 

These two values, however, are meant to express two exactly opposite states. It means, 

if a binary variable A ≠  0 then A = 1.  Similarly if A ≠  1, then A = 0.   

Note that it agrees with our intuitive understanding of electrical switches we are familiar 

with. 

a.  if switch A is not open then it is closed    

b. if switch A is not closed then it is open 

The values 0 and 1 should not be treated numerically, such as to say "0 is less than 1" 

or " 1 is greater than 0". 

Definition: The Boolean operator NOT, also known as complement operator represented 

by "  " (overbar) on the variable, or " / " (a superscript slash) after the variable, is 

defined by the following table. 

A A/ 
0 1 
1 0 

 

Though it is more popular to use the symbol " " (overbar) in most of the text-books, we 

will adopt the " / " to represent the complement of a variable, for convenience of typing.   

The circuit representation of the NOT operator is shown in the following:  

 

Definition: The Boolean operator "+" known as OR operator is defined by the table 

given in the following. 

A B A+B 
0 0 0 
0 1 1 
1 0 1 
1 1 1 
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The circuit symbol for logical OR operation is given in the following. 

      

Definition: The Boolean operator "." known as AND operator is defined by the table 

given below    

A B A.B 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

 

The circuit symbol for the logical AND operation is given in the following. 

 

The relationship of these operators to the electrical switching circuits can be seen from 

the equivalent circuits given in the following.  

Consider the NOT operator 

  

 

Consider the OR and AND operators 

 

A B A + B A.B 
Open Open Open Open 
Open Closed Closed Open 
Closed Open Closed Open 
Closed Closed Closed Closed 

 

We can define several other logic operations besides these three basic logic operations.   

These include  

   A/     A 
open closed 
closed open 

 

A 

A/ 



 

 

 

• NAND 

• NOR 

• Exclusive-OR (Ex-OR for short)  

• Exclusive-NOR (Ex-NOR)   

These are defined in terms of different combinations of values the variables assume, as 

indicated in the following table:  

A B (A.B)/ 

NAND 
(A+B)/ 

NOR 
A⊕B 
EX-OR 

A B 
EX-NOR 

0 0 1 1 0 1 
0 1 1 0 1 0 
1 0 1 0 1 0 
1 1 0 0 0 1 

 

Observe the following: 

• NAND operation is just the complement of AND operation  

• NOR operation is the complement of OR operation.  

• Exclusive-OR operation is similar to OR operation except that EX-OR 

operation leads to 0, when the two variables take the value of 1.   

• Exclusive-NOR is the complement of Exclusive-OR operation.  

These functions can also be represented graphically as shown in the figure. 

 

 

A set of Boolean operations is called functionally complete set if all Boolean expressions 

can be expressed by that set of operations. AND, OR and NOT constitute a functionally 

complete set. However, it is possible to have several combinations of Boolean operations 

as functionally complete sets.   

 - OR, AND and NOT           

 - OR and NOT           

 - AND and NOT           
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 - NAND           

 - NOR     

The completeness of these combinations is shown in the following. 

All Boolean functions through AND and NOT operations 

 

All Boolean functions through OR and NOT operations 



 

 

 

All Boolean functions through NAND function 

 

All Boolean functions through NOR function 



6 
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Logic Functions

� Electrical and electronic circuits can be built with devices 
that have two states 

� Variables with only two values are called Logic variables 
or Switching variables    

� We defined several Boolean/Logic operators
� A large variety of situations and problems can be 

described using logic variables and logic operators.  
� The description is done through �logic functions�
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Descriptions of logic functions

� Algebraic 
� Truth-table 
� Logic circuit
� Hardware description language
� Maps
Each form of representation is convenient in a different 

context. 



December 2006 N.J. Rao     M2L2 4

Logic Functions in Algebraic Form

Let A1, A2, . . . An be logic variables defined on the set   
BS = {0,1}. 

A logic function of n variables associates a value 0 or 1 to 
every one of the possible 2n combinations of the n 
variables.  
F1 = A1.A2/.A3.A4 + A1/.A2.A3/.A4 + A1.A2/.A3.A4/  
 F1 is a function of 4 variables

It is not necessary to have all the variables in all the terms. 
F2 = A1.A2 + A1/.A2.A3/ + A1/.A2.A4/.A5
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Properties of logic functions

� If F1(A1, A2, ... An ) is a logic function, then (F1(A1, 
A2, ...  A n))/ is also a Boolean function.

� If F1 and F2 are two logic functions, then F1+F2 and 
F1.F2 are also Boolean functions.

� Any function that is generated by the finite application 
of the above two rules is also logic function

There are a total of 2    distinct logic functions of n 
variables. 

2n

2 n
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Terms to get familiarized

� Literal: not-complemented or complemented version of 
a variable (A and A/ are literals)

� Product term: A series of literals related to one another 
through an AND operator. 
Ex: A.B/.D, A.B.D/.E, etc. 

� Sum term: A series of literals related to one another 
through an OR operator. 
Ex: A+B/+D, A+B+D/+E, etc.
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Truth Table

� It is a tabular representation of a logic function.   
� It gives the value of the function for all possible 

combinations of the values of the variables  
� For each combination, the function takes either 1 or 0 
� These combinations are listed in a table, which 

constitute the truth table for the given function.  
� The information contained in the truth table and in the 

algebraic representation of the function are the same.
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Example of a truth-table

F(A, B) = A.B + A.B/  

Truth table

111

101

010

000

FBA
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Truth and Truth Table

� The term truth table came into usage long before 
Boolean algebra came to be associated with digital 
electronics. 

� Boolean functions were originally used to establish truth 
or falsehood of a statement.  

� When statement is true the "1" is associated with it 
� When it is false "0" is associated. 
� This usage got extended to the variables associated with 

digital circuits
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Inappropriateness of truth and falsity

� All variables in digital systems are indicative of actions.  
Examples: "CLEAR", "LOAD", "SHIFT", "ENABLE", and 
"COUNT"  

� They are suggestive of actions.
� When a variable is asserted, the intended action takes 

place
� When a variable is not asserted the intended action does 

not take place  
� Associate "1" with the assertion of a variable, and "0" 

with the non-assertion of that variable. 
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Assertion and Non-assertion

F = A.B + A.B/

� Read it as "F is asserted when A and B are asserted or
A is asserted and B is not asserted".  

� We will continue to use the term "truth table" for 
historical reasons

We understand it as 
an input-output table associated with a logic function 

but not as something that is concerned with the 
establishment of truth.
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Size of the Truth-Table

� A five variable function would require 32 entries 
� A six-variable function would require 64 entries
When the number of variables increase a simple artefact 

may be adopted.   
� A truth table will have entries only for those terms for 

which the value of the function is "1", without loss of any 
information.   

� This is particularly effective when the function has 

smaller number of terms.
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Simpler Truth Table
F = A.B.C.D/.E/ + A.B/.C.D/.E + A/.B/.C.D.E + A.B/.C/.D.E

111001

111100

110101

100111

FEDCBA
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English Sentences  Logic Functions

Anil freaks out with his friends if it is Saturday and

he completed his assignments

� F = 1 if �Anil freaks out with his friends�; otherwise F = 0
� A = 1 if �it is Saturday�; otherwise A = 0
� B = 1 if �he completed his assignments�; otherwise B = 0
F is asserted if A is asserted and B is asserted.  
The sentence, therefore, can be translated into a logic 

equation as
F = A.B
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Rahul will attend the Networks class

if and only if his friend Shaila is attending the class

and the topic being covered in class is important from 
examination point of view

or there is no interesting matinee show in the city 
and      
the assignment is to be submitted

F

A

B

C/

D

F = A.B + C/.D
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Minterms

� A logic function has product terms.  
� Product terms that consist of all the variables of a 

function are called "canonical product terms", 
"fundamental product terms" or "minterms". 

� The term A.B.C/ is a minterm in a three variable logic 
function, but will be a non-minterm in a four variable logic 

function.
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Maxterms

� Sum terms which contain all the variables of a Boolean 
function are called "canonical sum terms", "fundamental 
sum terms" or "maxterms". 

� (A+B/+C) is an example of a maxterm in a three variable 
logic function.



December 2006 N.J. Rao     M2L2 18

Minterms and Maxterms of 3 variables

A/ + B/ + C/ = M7ABC   = m71117

A/+ B/ + C = M6A B C/ = m60116

A + B + C/ = M5A B/C = m51015

A + B + C = M4A B/C/ = m40014

A + B/ + C/ = M3A/ BC = m31103

A + B/ + C = M2A/ BC/ = m20102

A + B + C/ = M1A/ B/C = m11001

A + B + C = M0A/B/C/ = m00000

MaxtermsMintermsCBATerm No.
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Logic function as a sum of minterms

Consider a function of three variables
F = m0 + m3 + m5 + m6

This is equivalent to 

F = A/B/C/ +  A/BC  + A/BC/ + ABC/

A logic function that is expressed as an OR of several 
product terms is considered to be in "sum-of-products" or 

SOP form.



December 2006 N.J. Rao     M2L2 20

Logic function as a product of 
Maxterms

F is a function of three variables
F = M0 . M3 . M5 . M6

When F expressed as an AND of several sum terms, it is 

considered to be in "product-of-sums" or POS form.
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Canonical form

If all the terms in an expression or function are 
canonical in nature, then it is considered to be in 
canonical form. 
� minterms in the case of SOP form
� maxterms in the case of POS form
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Canonical form (2)

Consider the function
F = A.B + A.B/.C + A/.B.C 

It is not in canonical form
It can be converted into canonical form:

A.B  = A.B.1                 (postulate 2b)         
= A.B.(C + C/)          (postulate 5a)         
= A.B.C + A.B.C/ (postulate 4b)     

The canonical version of F 

F = A.B.C + A.B.C/+ A.B/.C + A/.B.C
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Priorities in a logical expression

� NOT ( / ) operation has the highest priority, 
� AND (.) has the next priority
� OR (+) has the last priority  

in 
F =  A.B + A.B/.C + A/.B.C 
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Sequence of operations

F =  A.B + A.B/.C + A/.B.C 
 NOT operation on B and A
 AND terms: A.B, A.B/.C, A/.B.C 
 OR operation on AB, A.B/.C and A/. B.C

The order of priority can be modified through using 
parentheses. 

F1 = A.(B+C/) + A/.(C+D) 
By applying the distributive law, these expressions can 
be brought into the SOP form
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Circuit Representation of Logic 
Functions

A logic function can be represented in a 
circuit form using these circuit symbols  

F1 = A.B + A.B/
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Other forms

Boolean function in POS form
F2 = (A+B+C) . (A+B/+C/)
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Other forms
Logical function in terms of other functionally complete 
set of logical operations 
NAND is one such functionally complete set.  
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Other forms

NOR is another functionally complete set.

A
B

F1



 
 

Logic Functions 

Many types of electrical and electronic circuits can be built with devices that have two 

possible states.  We are, therefore interested in working with variables, which can take 

only two values. Such two valued variables are called Logic variables or Switching 

variables.     

We defined several Boolean operators, which can also be called Logic operators.  We will 

find that it is possible to describe a wide variety of situations and problems using logic 

variables and logic operators.  This is done through defining a “logic function” of logic 

variables. 

We can describe logic functions in several ways.  These include 

• Algebraic  

• Truth-table  

• Logic circuit 

• Hardware description language 

• Maps 

We use all these forms to express logic functions in working with digital circuits. Each 

form of representation is convenient in some context.  Initially we will work with 

algebraic, truth-table, and logic circuit representation of logic functions. 

The objectives of this learning unit are 

1. Writing the output of a logic network, whose word description is given, as a 

function of the input variables either as a logic function, a truth-table, or a logic 

circuit. 

2. Create a truth-table if the description of a logic circuit is given in terms of a logic 

function or as a logic circuit. 

3. Write a logic function if the description of a logic circuit is given in terms of a 

truth-table or as a logic circuit. 

4. Create a logic circuit if its description is given in terms of a truth-table or as a 

logic function. 

5. Expand a given logic function in terms of its minterms or maxterms. 

6. Convert a given truth-table into a logic function into minterm or maxterm forms. 

7. Explain the nature and role of “don’t care” terms 

 



 
 

Logic Functions in Algebraic Form 

Let A1, A2, . . . An be logic variables defined on the set BS = {0,1}. A logic function of n 

variables associates a value 0 or 1 to every one of the possible 2n combinations of the n 

variables.  Let us consider a few examples of such functions. 

F1 = A1.A2/.A3.A4 + A1/.A2.A3/.A4 + A1.A2/.A3.A4/   

F1 is a function of 4 variables.  You notice that all terms in the function have all the four 

variables.  It is not necessary to have all the variables in all the terms.  Consider the 

following example. 

F2 = A1.A2 + A1/.A2.A3/ + A1/.A2.A4/.A5 

F2 happens to be simplified version of a function, which has a much larger number of 

terms, where each term has all the variables.  We will explore ways and means to 

generate such simplifications from a given logic expression. 

The logic functions have the following properties: 

1. If F1(A1, A2, ... An ) is a logic function, then (F1(A1, A2, ...  A n))
/ is also a Boolean 

function. 

2. If F1 and F2 are two logic functions, then F1+F2 and F1.F2 are also Boolean 

functions. 

3. Any function that is generated by the finite application of the above two rules is 

also a logic function 

Try to understand the meaning of these properties by solving the following examples. 

If F1 = A.B.C + A.B/.C + A.B.C/ what is the logic function that represents F1/ ? 

If F1 = A.B + A/.C and F2 = A.B/ + B.C write the logic functions F1 + F2 and F1.F2? 

As each one of the combinations can take value of 0 or 1, there are a total of 2
2n

 distinct 

logic functions of n variables.  

It is necessary to introduce a few terms at this stage.  

"Literal" is a not-complemented or complemented version of a variable. A and A/ are 

literals 

"Product term" or "product" refers to a series of literals related to one another through 

an AND operator. Examples of product terms are A.B/.D, A.B.D/.E, etc.  

"Sum term" or "sum" refers to a series of literals related to one another through an OR 

operator. Examples of sum terms are A+B/+D, A+B+D/+E, etc. 



 
 

The choice of terms "product" and  "sum" is possibly due to the similarity of OR and AND 

operator symbols "+" and "." to the traditional arithmetic addition and multiplication 

operations. 



 

Truth Table Description of Logic Functions 

The truth table is a tabular representation of a logic function.   It gives the value of the 

function for all possible combinations of values of the variables.   If there are three 

variables in a given function, there are 23 = 8 combinations of these variables.  For each 

combination, the function takes either 1 or 0.  These combinations are listed in a table, 

which constitutes the truth table for the given function.  Consider the expression, 

      F (A, B) = A.B + A.B/     

The truth table for this function is given by, 

A B F 
0 0 0 
0 1 0 
1 0 1 
1 1 1 

 

The information contained in the truth table and in the algebraic representation of the 

function are the same. 

The term ‘truth table’ came into usage long before Boolean algebra came to be 

associated with digital electronics. Boolean functions were originally used to establish 

truth or falsehood of statements.  When statement is true the symbol "1" is associated 

with it, and when it is false "0" is associated. This usage got extended to the variables 

associated with digital circuits.   However, this usage of adjectives "true" and "false" is 

not appropriate when associated with variables encountered in digital systems.   All 

variables in digital systems are indicative of actions.  Typical examples of such signals 

are "CLEAR", "LOAD", "SHIFT", "ENABLE", and "COUNT".  These are suggestive of 

actions. Therefore, it is appropriate to state that a variable is ASSERTED or NOT 

ASSERTED than to say that a variable is TRUE or FALSE.   When a variable is asserted, 

the intended action takes place, and when it is not asserted the intended action does not 

take place.  In this context we associate "1" with the assertion of a variable, and "0" with 

the non-assertion of that variable.  Consider the logic function, 

     F = A.B + A.B/      

It should now be read as "F is asserted when A and B are asserted or A is asserted and 

B is not asserted".  This convention of using "assertion” and “non-assertion" with the 

logic variables will be used in all the Learning Units of this course on Digital Systems. 

The term ‘truth table’ will continue to be used for historical reasons. But we understand 

it as an input-output table associated with a logic function, but not as something that is 

concerned with the establishment of truth. 



 

As the number of variables in a given function increases, the number of entries in the 

truth table increases exponentially.  For example, a five variable expression would 

require 32 entries and a six-variable function would require 64 entries.  It, therefore, 

becomes inconvenient to prepare the truth table if the number of variables increases 

beyond four.  However, a simple artefact may be adopted.   A truth table can have 

entries only for those terms for which the value of the function is "1", without loss of any 

information.   This is particularly effective when the function has only a small number of 

terms.   Consider the Boolean function with six variables 

     F = A.B.C.D/.E/ + A.B/.C.D/.E + A/.B/.C.D.E + A.B/.C/.D.E 

The truth table will have only four entries rather than 64, and the representation of this 

function is  

A B C D E F 
1 1 1 0 0 1 
1 0 1 0 1 1 
0 0 1 1 1 1 
1 0 0 1 1 1 

 
Truth table is a very effective tool in working with digital circuits, especially when the 

number of variables in a function is small, less than or equal to five.  

 
 



 

 
 

Conversion of English Sentences to Logic Functions 

Some of the problems that can be solved using digital circuits are expressed through one 

or more sentences.  For example, 

 At the traffic junction the amber light should come on 60 seconds after the red 

light, and get witched off after 5 seconds. 

 If the number of coins put into the vending machine exceed five rupees it should 

dispense a Thums Up bottle. 

 The lift should start moving only if the doors are closed and a floor number is 

chosen. 

These sentences should initially be translated into logic equations.  This is done through 

breaking each sentence into phrases and associating a logic variable with each phrase.  

As stated earlier many of these phrases will be indicative of actions or directly represent 

actions.  We first mark each action related phrase in the sentence.  Then we associate a 

logic variable with it.  Consider the following sentence, which has three phrases: 

Anil freaks out with his friends if it is Saturday and he completed his assignments 
 

We will now associate logic variables with each phrase.  The words “if” and “and” are not 

included in any phrase and they show the relationship among the phrases. 

F = 1 if “Anil freaks out with his friends”; otherwise F = 0 

A = 1 if “it is Saturday”; otherwise A = 0 

B = 1 if “he completed his assignments”; otherwise B = 0 

F is asserted if A is asserted and B is asserted.  The sentence, therefore, can be 

translated into a logic equation as 

  F = A.B 

For simple problems it may be possible to directly write the logic function from the word 

description.  In more complex cases it is necessary to properly define the variables and 

draw a truth-table before the logic function is prepared.  Sometimes the given sentences 

may have some vagueness, in which case clarifications need to be sought from the 

source of the sentence.   Let us consider another sentence with more number of 

phrases. 

Rahul will attend the Networks class if and only if his friend Shaila is attending the class 

and the topic being covered in class is important from examination point of view or there 

is no interesting matinee show in the city and the assignment is to be submitted. Let us 

associate different logic variables with different phrases. 
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Rahul will attend the Networks class if and only if his friend Shaila is attending the class  

  F           A 

and the topic being covered in class is important from examination point of view or  

       

     B 

there is no interesting matinee show in the city      and      the assignment is to be 
submitted 

 
   C/       D 
 
With the above assigned variables the logic function can be written as 
 
   F = A.B + C/.D 



 

 

Minterms and Maxterms 

A logic function has product terms.  Product terms that consist of all the variables of a 

function are called "canonical product terms", "fundamental product terms" or 

"minterms". For example the logic term A.B.C' is a minterm in a three variable logic 

function, but will be a non-minterm in a four variable logic function.  Sum terms which 

contain all the variables of a Boolean function are called "canonical sum terms", 

"fundamental sum terms" or "maxterms".  (A+B/+C) is an example of a maxterm in a 

three variable logic function. 

Consider the Table which lists all the minterms and maxterms of three variables.  The 

minterms are designated as m0, m1, . . . m7, and maxterms are designated as M0, M1, . . 

. M7. 

Term No. A B C Minterms Maxterms 

0 0 0 0 A/B/C/ = m0 A + B + C = M0 

1 0 0 1 A/ B/C = m1 A + B + C/ = M1 

2 0 1 0 A/ BC/ = m2 A + B/ + C = M2 

3 0 1 1 A/ BC = m3 A + B/ + C/ = M3 

4 1 0 0 A B/C/ = m4 A + B + C = M4 

5 1 0 1 A B/C = m5 A + B + C/ = M5 

6 1 1 0 A B C/ = m6 A/+ B/ + C = M6 

7 1 1 1 ABC   = m7 A/ + B/ + C/ = M7 

 
A logic function can be written as a sum of minterms.  Consider F, which is a function of 

three variables. 

 F = m0 + m3 + m5 + m6        

This is equivalent to  

 F = A/B/C/  +  A/BC  + AB/C + ABC/       

A logic function that is expressed as an OR of several product terms is considered to be 

in "sum-of-products" or SOP form. If it is expressed as an AND of several sum terms, it 

is considered to be in "product-of-sums" or POS form.  Examples of these two forms are 

given in the following: 

         F1 = A.B + A.B/.C + A/.B.C               (SOP form)     

       F2 = (A+B+C/) . (A+B/+C/) . (A/+B/+C)      (POS form)    

If all the terms in an expression or function are canonical in nature, that is, as minterms 

in the case of SOP form, and maxterms in the case of POS form, then it is considered to 

be in canonical form. For example, the function in the equation (1) is not in canonical 

form. However it can be converted into its canonical form by expanding the term A.B as  

       



 

 

A.B  = A . B . 1                      (postulate 2b)             

                 = A . B . (C + C/)            (postulate 5a)                   

        = A . B . C + A . B . C/     (postulate 4b)      

The canonical version of F1 is, 

      F1 = A.B.C + A.B.C/ + A.B/.C + A/.B.C    

The Boolean function F2 is in canonical form, as all the sum terms are in the form of 

maxterms.  

The SOP and POS forms are also referred to as two-level forms. In the SOP form, AND 

operation is performed on the variables at the first level, and OR operation is performed 

at the second level on the product terms generated at the first level.  

Similarly, in the POS form, OR operation is performed at the first level to generate sum 

terms, and AND operation is performed at the second level on these sum terms. 

In any logical expression, the right hand side of a logic function, there are certain 

priorities in performing the logical operations.  

• NOT ( / ) operation has the highest priority,  

• AND (.) has the next priority 

• OR (+) has the last priority.   

In the expression for F1 the operations are to be performed in the following sequence 

• NOT operation on B and A 

• AND terms: A.B, A.B/.C, A/.B.C 

• OR operation on AB, AB/C and A/BC   

However, the order of priority can be modified through using parentheses. It is also 

common to express logic functions through multi-level expressions using parentheses. A 

simple example is shown in the following. 

      F1 = A.(B+C/) + A/.(C+D)   

These expressions can be brought into the SOP form by applying the distributive law.   

More detailed manipulation of algebraic form of logic functions will be explored in 

another Learning Unit. 



 

Circuit Representation of Logic Functions 

Representation of basic Boolean operators through circuits was already presented in the 

earlier Learning Unit. A logic function can be represented in a circuit form using these 

circuit symbols.  Consider the logic function 

      F1 = A.B + A.B/                                                  

Its circuit form is  

 
 
 
Consider another example of a Boolean function given in POS form. 

      F2 = (A+B+C) . (A+B/+C/)                                      

The circuit form of the logical expression F2 is 

 

    
F1 can also be represented in terms of other functionally complete set of logical 

operations. NAND is one such functionally complete set.  NAND representation of logic 

expression F2 is   

 

    

NOR is another functionally complete set.  NOR representation of the same function F1 is  
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Karnaugh Map

� Key to minimizing a logic expression is identification of 
logic adjacency

� Graphic representation of logic expression can facilitate 
identification of adjacency

� M. Karnaugh introduced (1953) a map to pictorially 
represent a logical expression.

� It is known as Karnaugh Map abbreviated as K-map.
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Karnaugh Map

� K-Map is a pictorial form of the truth-table. 
� The inherent structure of the map facilitates systematic 

minimization
� K-map uses the ability of human perception to identify 

patterns and relationships when the information is 
presented graphically
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Logical Adjacency

� Two terms are logically adjacent if they differ with 
respect any one variable.  

� ABC is logically adjacent to A/BC, AB/C and ABC/ 

� ABC is not logically adjacent to A/B/C, A/BC/, A/B/C/, 
AB/C/

� The entries that are adjacent in a truth-table are not 
necessarily logically adjacent

� K-map arranges the logically adjacent terms to be 
physically adjacent 
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Representation of a K-map

� There are two popular ways
� K-maps of a two variable function (representation �a� is 

preferred)
 A A 

B 

0 0 

1 1 

2 
2 

3 3 B 

a b 
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Cells in a K-Map

The four cells (squares) 
represent four minterms
Cell 0  minterm m0

Cell 1  minterm m1

Cell 2  minterm m2

Cell 3  minterm m3

Cell 1 (minterm m1) is adjacent 
to cell 0 (minterm m0) and cell 3 
(minterm m3)

 A 

0 

1 

2 

3 B 
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Example 1

Consider a two-variable logic function
F = A/B + AB/

The truth table 

A/B (01) and AB/ (10) are not logically adjacent

0
1
1
0

0
1
0
1

0
0
1
1

FBA
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Example 1(2)

$)

% � �

��

The two cells in which "1" is entered are not positionally
adjacent and hence are not logically adjacent 

K-map of F
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Example 2

$

% �

�

�

�

F = A/B + AB                                          

K-map

Cells in which "1" is entered are positionally adjacent 
and hence logically adjacent 
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Three-Variable Karnaugh Map

A three-variable (A, B and C) K-map has 23 = 8 cells

� The numbering followed assures logical adjacency
� Cell 0 (000) and the cell 4 (100) are also adjacent (cyclic 
adjacency)
� The boundaries on the opposite sides of a K-map are 
considered to be one common side for the associated two 
cells
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Group of Terms

Adjacency is not merely between two cells

F =  (1, 3, 5, 7) 
= A/B/C + A/BC + AB/C + ABC      
= A/C(B/+B) + AC(B/+B)       
= A/C + AC  = (A/+A)C  = C
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Cyclic Adjacency

A cyclic relationship among the 
cells 1, 3, 5 and 7 can be 
observed on the map 

In  a three-variable map other 
groups  of  cells  that  are 
cyclically adjacent  are
 0,  1,  3 and 2 
 2, 3, 7 and 6 
 6, 7, 5 and 4
 4, 5, 1 and 0 
 0, 2, 6 and 4
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Four-variable K-Map

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A

B

C

D

Groups with cyclic adjacency:
� 0, 1, 5 and 4
� 1, 5, 7, and 3  etc.  
� 0, 1, 3, 2, 10, 11, 9 and 8 
� 4, 12, 13,15,14, 6, 7 and 5 
etc.
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Function of four variables

F =  (2, 3, 8, 9, 11, 12)
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5-Variable K-Map
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5-Variable K-Map (2)

� Simple and cyclic adjacencies are applicable to this map
� They need to be applied separately to the two sections 

of the map
� Cell 8 and cell 0 are adjacent.  
� Taking the assertion and non-assertion of A into 

account, cell 0 and cell 16 are adjacent. 
� Similarly there are 15 more adjacent cell pairs              

(4-20,12-28, 8-24, 1-17, 5-21, 13-29, 9-25, 3-19, 7-23, 
15-31,11-27, 2-18, 6-22, 14-30, and 10-26).
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5-Variable Function

F = A/BC/DE/ + A/BCDE/ + A/BC/DE + ABCDE + A/BC/D/E   
+ ABC/DE/ + ABCDE/ + ABC/DE + ABC/D/E + ABC/D/E/
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K-Map Properties

� Karnaugh Map's main feature is to convert logic 
adjacency into positional adjacency  

� Every  K-map has  2n cells  corresponding  to 2n

minterms
� Combinations are arranged in a special order so as to 

keep the equivalence of logic adjacency to positional 
adjacency  

� There are three kinds of positional adjacency, namely 
simple, cyclic and symmetric



December 2006 N.J. Rao     M2L3 19

Function not in canonical POS form

� If the Boolean function is available in the canonical SOP 
form, a "1" is entered in all those cells representing the 
minterms of the expression, and "0" in all the other cells

� If it is not available in the canonical form, convert the 
non-canonical form into canonical SOP form 

� Convert the function into the standard SOP form and 
directly prepare the K-map.
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Example

A

D

B

C

1         1          0        0

1         1          1        0

0         1          0        0

 0         1          1        0 

F = A/B + A/B/C/ + ABC/D + ABCD/

There are four variables in the expression 
A/B, containing two variables represents four minterms
A/B/C/ represents two minterms
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Function in POS form

F = (0, 4, 6, 7, 11, 12, 14, 15)
0s are filled in the cells represented by the maxterms
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Function in standard POS form

� Initially convert the standard POS form of the expression 
into its canonical form, and enter 0s in the cells 
representing the maxterms

� Enter 0s  directly into the map by  observing the sum 
terms  one  after the other 
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Example in the POS form

F = (A+B+D/).(A/ +B+C/ +D).(B/ +C)                 /

Convert into canonical POS form
F = (A+B+C+D/).(A+B+C/ +D/)(A/ +B+C/ +D). (A+B/ +C+D). 

(A/ +B/ +C+D).(A+B/ +C+D/). (A/ +B/ +C+D/) 
= M1 . M3 . M10 . M4 . M12 . M5 . M13      

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in 
them while the remaining cells are filled with 1s
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Example in the POS form
F = (A+B+D/).(A/+B+C/+D).(B/+C)
�(A+B+D/) has A and B asserted and D non-asserted.   The two 
maxterms associated with this sum term are 0001 (M1) and 0011 (M3) 
�(A/+B+C/+D) is in canonical form and the maxterm associated with is 
1010 (M10)  
�Maxterms associated with (B/+C) are 0100 (M4), 1100 (M12), 0101 
(M5) and 1101 (M13)

1

0

1

0

0

0

1

1

1

1

0

1

0

0

1
1

A

B

C

D
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Essential, Prime and Redundant 
Implicants

The patterns of adjacency of 1-entered cells are referred to 
as implicants.  
An implicant is a group of 2i (i = 0, 1 ....n) minterms
(1-entered cells) that are logically (positionally) adjacent. 
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Implicants and Product Terms

An implicant represents a product term 
� Implicant 1 represents the product term AC/

� Implicant 2 represents ABD 
� Implicant 3 represents BCD
� Implicant 4 represents A/B/CD/

Smaller the number of implicants the smaller the number of 
product terms in the simplified Boolean expression. 
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Many ways of identifying implicants
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Implicants with properties

� A prime implicant is one that is not a subset of any 
other implicant

� A prime implicant which includes a 1-entered cell that is 
not included in any other prime implicant is called an 
essential prime implicant.

� A redundant implicant is one in which all the 1-entered 
cells are covered by other implicants
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Example

�Implicants 2, 3, 4 and 5 in (a), and 1, 2 and 3 in (b) are prime implicants
�Implicants 2, 4 and 5 in (a), and 

1, 2 and 3 in (b) are essential prime implicants
�Implicants 1 and 3 in (a) are redundant implicants
�No redundant implicants in (b) 
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K-map  minimisation

� Find the smallest  set  of  prime  implicants that  
includes  all the essential  prime implicants

� If there is a choice, the simpler prime implicant
should be chosen.
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Example 1

Implicants
X1 = C/D/ X9   = B/C/D/

X2 = B/C/ X10 = A/C/D/

X3 = BD/ X11 = AC/D/

X4 = ACD  X12 = AB/D
X5 = AB/C/ X13 = ABC
X6 = BCD/ X14 = A/BD/

X7 = A/B/C/ X15 = ABD/

X8 = BC/D/ X16 = B/C/D
All are not prime implicants
X2, X3 and X4 are essential 
prime implicants
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Combination 1

F1 = X1 + X4 + X6 + X16

�
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Combination 2

�
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F1 = X4 + X5 + X6 + X7 + X8
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Combination 3
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F1 = X2 + X3 + X4
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Combination 4

F1 = X10 + X11 + X8 + X4 + X6
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Example 1: Minimization 

Smallest  set  of  prime  implicants that  includes  
all the essential  prime implicants

F1 = X2 + X3 + X4
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Example 

Three sets of prime implicants
(a) X1 = B/D/ X2 = A/B  X3 = BD  X4 = ACD
(b)  X4 = ACD   X5 = AB/D/ X6 = A/B/D/ X7 = ABD     X8 = A/BC        

X9 = A/BC/

(c)  X7 = ABD   X10 = B/C/D/ X11 = A/C/D/ X12 = A/BD   
X13 = A/C/D/ X14 = AB/C
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Example (2)
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Some simplified expressions

F = X1 + X2 + X3 + X4                                 
=  X4 + X6 + X7 + X8 + X9                         
=  X7 + X10 + X11 + X12 + X13 + X14
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Standard POS form from K- map 
(Example)
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Four implicants are identified
� Implicant 1 and it is represented by (A + B/)
� Implicant 2 is represented by (B/ + D/) 
� Implicant 3 is represented by (B + D)  
� Implicant 4  is represented by (A/ + C/ + D/)
The simplified expression in the POS form is given by;

F = (A + B/) . (B/ + D/) . (B + D) . (A/ + C/ + D/)        
If we  choose the  implicant 5  instead  of  4,  the  simplified  

expression  
F = (A + B/) . (B/ + D/).(B + D).(A/ + B +C/) 
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Minimization procedure

1.Draw the K-map with 2n cells, where n is the 
number of variables in a Boolean function. 

2.Fill in the K-map with 1s and 0s as per the 
function given in the algebraic form (SOP or 
POS) or truth-table form.
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Minimization procedure (2)

3. Determine the set of prime implicants that consist of all 
the essential prime implicants as per the criteria:
� All the 1-entered or 0-entered cells are covered by a 

set of implicants, while making the number of cells 
covered by each implicant as large as possible.

� Eliminate the redundant implicants. 
� Identify all the essential prime implicants.     
� Whenever   there is  a  choice  among  the  prime 

implicants select the prime  implicant with  the  
smaller  number of  literals.
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Minimization procedure (3)

4. If the final expression is to be generated in SOP 
form, the prime implicants should be identified 
by suitably grouping the positionally adjacent   
1-entered cells, and converting each of the 
prime implicant into a product term.  The final 
SOP expression is the OR of all the product 
terms.
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Minimization procedure (4)

5. If the final simplified expression is to  be given  
in the POS form,  the prime implicants should  
be  identified  by suitably grouping  the 
positionally adjacent   0-entered   cells,  and 
converting each  of  the prime implicant into  a  
sum  term.  The final POS expression is the 
AND of all sum terms.
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Incompletely specified functions

All Boolean functions are not always completely specified
Consider the BCD decoder,
� Only 10 outputs are decoded from 16 possible input 

combinations
� The six invalid combinations of the inputs never occur 
� We don�t-care what the output is for any of these 

combinations that should never occur
� These don�t-care situations can be used advantageously in 

generating a simpler Boolean expression 
� Such don�t-care combinations of the variables are 

represented by an "X" in the appropriate cell of the K-map



December 2006 N.J. Rao     M2L3 47

Example

The decoder has three inputs A, B and C and 
an output F

Input from keyboard
Input from mouse
Input from light-pen
Output to printer
Output to plotter

0
0
0
1
1

0    0    1
0    1    0
0    1    1
1    0    0
1    0    1

1
2
3
4
5

DescriptionOutputInput CodeMode No
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Truth-table and K-map with don�t 
cares

X11

X011

1

1101

1001

0110

0010

0100

X000

FCBA

Using the three don�t care conditions

K-map
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SOP and POS forms

F = S (4, 5) + d (0, 6, 7)                               
F = P (1, 2, 3) . d (0, 6, 7)                               
� The term d (0, 6, 7) represent the don�t-care terms.
� Xs can be treated either as 0s or as 1s depending on the 
convenience

F = A          
F = AB/
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Example

F = S (0,1,4,8,10,11,12) + d(2,3,6,9,15)

The simplified expression F = B/ + C/D/
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Multiple functions in same set of 
variables

F1(A,B,C) = (0, 3, 4, 5, 6); F2(A,B,C) = (1, 2, 4, 6, 7); 
F3(A,B,C) =  (1, 3, 4, 5, 6)

The resultant minimal expressions
F1 = B/C/ + AC/ + AB/ + A/BC     
F2 = BC/ + AC/ + AB + A/B/C     
F3 = AC/ + B/C + A/C      

These functions have nine product terms and twenty one literals
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Multiple functions in same set of 
variables (2)

Minor modifications to these expressions lead to          
F1 = B/C/ + AC/ + AB/ + A/BC     
F2 = BC/ + AC/ + AB + A/B/C     
F3 = AC/ + AB/ + A/BC + A/B/C      
This leads to seven product terms and sixteen literals

F1
A

C

B

1

0 1

1

1

10

0

F2

1 1 1

1 10

0

0

A

B

C

F3

1 1

1 1 1

0 0

0

A

B

C



Karnaugh-Map  

The expressions for a logical function (right hand side of a function) can be very long 

and have many terms and each term many literals.  Such logical expressions can be 

simplified using different properties of Boolean algebra.  This method of minimization 

requires our ability to identify the patterns among the terms.  These patterns should 

conform to one of the four laws of Boolean algebra. However, it is not always very 

convenient to identify such patterns in a given expression. If we can represent the 

same logic function in a graphic form that allows us to identify the inherent patterns, 

then the simplification can be performed more conveniently.  

Karnaugh Map is one such graphic representation of a Boolean function in the form 

of a map. Karnaugh Map is due to M. Karnaugh, who introduced (1953) his version 

of the map in his paper "The Map Method for Synthesis of Combinational Logic 

Circuits". Karnaugh Map, abbreviated as K-map, is actually pictorial form of the 

truth-table.  This Learning Unit is devoted to the Karnaugh map and its method of 

simplification of logic functions.   

Karnaugh map of a Boolean function is graphical arrangement of minterms, for which 

the function is asserted.  

We can begin by considering a two-variable logic function, 

 F = A/B + AB  

Any two-variable function has 22 = 4 minterms.  The truth table of this function is 

 

A B F 
0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
1 
0 

 

It can be seen that the values of the variables are arranged in the ascending order 

(in the numerical decimal sense).   

We consider that any two terms are logically adjacent if they differ only with respect 

any one variable.   

For example ABC is logically adjacent to A/BC, AB/C and ABC/. But it is not logically 

adjacent to A/B/C, A/BC/, A/B/C/, AB/C/.  



The entries in the truth-table that are positionally adjacent are not logically adjacent. 

For example A/B (01) and AB/ (10) are postionally adjacent but are not logically 

adjacent. The combination of 00 is logically adjacent to 01 and 10.  Similarly 11 is 

adjacent to 10 and 01.   Karnaugh map is a method of arranging the truth-table 

entries so that the logically adjacent terms are also physically adjacent.    

The K-map of a two-variable function is shown in the figure.  There are two popular 

ways of representing the map, both of which are shown in the figure.  The 

representation, where the variable above the column or on the side of the row in 

which it is asserted, will be followed in this and the associated units. 

 

 There are four cells (squares) in this map.    

 The cells labelled as 0, 1, 2 and 3 represent the four minterms m0, m1, m2 and 

m3. 

 The numbering of the cells is chosen to ensure that the logically adjacent 

minterms are positionally adjacent.   

 Cell 1 is adjacent to cell 0 and cell 3, indicating the minterm m1 (01) is logically 

adjacent to the minterm m0 (00) and the minterm m3 (11).  

 The second column, above which the variable A is indicated, has the cells 2 and 3 

representing the minterms m2 and m3.  The variable A is asserted in these two 

minterms.    

Let us define the concept of position adjacency.   Position adjacency means two 

adjacent cells sharing one side. Such an adjacency is called simple adjacency.  Cell 0 

is positionally adjacent to cell 1 and cell 2, because cell 0 shares one side with each 

of them.  Similarly, cell 1 is positionally adjacent to cell 0 and cell 3, as cell 2 is 

adjacent to cell 0 and cell 3, and cell 3 is adjacent to cell 1 and cell 2.   



There are other kinds of positional adjacencies, which become relevant when the 

number of variables is more than 3. We will explore them at a later time.  

The main feature of the K-map is that by merely looking at the position of a cell, it is 

possible to find immediately all the logically adjacent combinations in a function. 

The function F = (A/B + AB) can now be incorporated into the K-map by entering "1"  

in cells represented by the minterms for which the function is asserted. A "0" is 

entered in all other cells.  K-map for the function F is  

 

You will notice that the two cells in which "1" is entered are not positionally adjacent.  

Therefore, they are not logically adjacent.  

Consider another function of two variables. 

      F = A/B + AB                                                      

The K-map for this function is  

 

You will notice that the cells in which "1" is entered are positionally adjacent and 

hence are logically adjacent.     

Three-Variable Karnaugh Map:  

K-map for three variables will have 23 = 8 cells as shown in the figure.  

     



The cells  are  labelled 0,1,..,7,  which  stand  for combinations 000, 001,...,111 

respectively.  Notice that cells in two columns are associated with assertion of A, two 

columns with the assertion of B and one row with the assertion of C. 

Let us consider the logic adjacency and position adjacency in the map. 

 Cell 7 (111) is adjacent to the cells 3 (011), 5 (101) and 6 (110).   

 Cell 2 (010) is adjacent to the cell 0 (000), cell 6 (110) and cell 3 (011).   

 We know from logical adjacency the cell 0 (000) and the cell 4 (100) should also 

be adjacent. But we do not find them positionally adjacent.   Therefore, a new 

adjacency called "cyclic adjacency" is defined to bring the boundaries of a row or 

a column adjacent to each other. In a three-variable map cells 4 (100) and 0 

(000), and cells 1 (001) and 5 (101) are adjacent.  The boundaries on the 

opposite sides of a K-map are considered to be one common side for the 

associated two cells. 

Adjacency is not merely between two cells. Consider the following function: 

      F = Σ (1, 3, 5, 7)           

          = m1 + m3 + m5 + m7         

    = A'B'C + A'BC + AB'C + ABC        

   = A'C(B'+B) + AC(B'+B)                

              = A'C + AC  

              = (A'+A)C                

              = C 

The K-map of the function F is  

 

It is shown clearly that although there is no logic adjacency between some pairs of 

the terms, we are able to simplify a group of terms. For example A/B/C, ABC, A/BC 

and AB/C are simplified to result in an expression "C". A cyclic relationship among 

the cells 1, 3, 5 and 7 can be observed on the map in the form 1  3  7   5  1 

(" " indicating "adjacent to").  When a group of cells, always 2i (i < n) in number, 



are adjacent to one another in a sequential manner those cells are considered be 

cyclically adjacent.  

Other groups of cells with ‘cyclic adjacency’  

 0, 1, 3 and 2  

 2, 3, 7 and 6  

 6, 7, 5 and 4  

 4, 5, 1 and 0  

 0, 2, 6 and 4 

So far we noticed two kinds of positional adjacencies:  

 Simple adjacency  

 Cyclic adjacency  (It has two cases, one is between two cells, and the other 

among a group of 2i cells) 

Four-variable Karnaugh Map: A four-variable (A, B, C and D) K-map will have 24 

= 16 cells.  

 
 

These cells are labelled 0, 1,..., 15, which stand for combinations 0000, 0001,...1111 

respectively.   Notice that the two sets of columns are associated with assertion of A 

and B, and two sets of rows are associated with the assertion of C and D. 

We will be able to observe both simple and cyclic adjacencies in a four-variable map 

also.   4, 8 and 16 cells can form groups with cyclic adjacency.   Some examples of 

such groups are  

 0, 1, 5 and 4   

 0, 1, 3 and 2  

 10, 11, 9 and 8  



 14, 12,13 and15 

 14, 6, 7 and 15 

 3, 7, 15, 11, 10, 14, 6 and 2  

Consider a function of four variables 

 F = Σ (2, 3, 8, 9, 11, 12)                                

The K-map of this function is  

 

     

Five-variable Karnaugh Map: Karnaugh map for five variables    

 

 It has 25 = 32 cells labelled as 0,1, 2 ...,31, corresponding to the 32  

combinations from 00000 to 11111.   

 The map is divided vertically into two symmetrical parts.  Variable A is not-

asserted on the left side, and is asserted on the right side.  The two parts of the 

map, except for the assertion or non-assertion of the variable A are identical with 

respect to the remaining four variables B, C, D and E.   



 Simple and cyclic adjacencies are applicable to this map, but they need to be 

applied separately to the two sections of the map.   For example cell 8 and cell 0 

are adjacent.  The largest number of cells coming   under cyclic adjacency can go 

up to 25 = 32.    

 Another type of adjacency, called ‘symmetric adjacency’, exists because of the 

division of the map into two symmetrical sections.  Taking the assertion and non-

assertion of A into account, we find that cell 0 and cell 16 are adjacent. Similarly 

there are 15 more adjacent cell pairs (4-20, 12-28, 8-24, 1-17, 5-21, 13-29, 9-

25, 3-19, 7-23, 15-31, 11-27, 2-18, 6-22, 14-30, and 10-26). 

Consider a function of five-variable  

F = A/BC/DE/ + A/BCDE/ + A/BC/DE + ABCDE + A/BC/D/E + ABC/DE/ + ABCDE/ 

 + ABC/DE + ABC/D/E + ABC/D/E/ 

 
 

From the study of two-, three-, four- and five-variable Karnaugh maps, we can 

summarise the following properties: 

1. Every Karnaugh map has 2n cells corresponding to 2n minterms.  

2. The main feature of a Karnaugh Map is to convert logic adjacency into 

positional adjacency.   

3. There are three kinds of positional adjacency, namely simple, cyclic and 

symmetric. 

We have already seen how a K-map can be prepared provided the Boolean function 

is available in the canonical SOP form.  

A "1" is entered in all those cells representing the minterms of the expression, and 

"0" in all the other cells.  



However, the Boolean functions are not always available to us in the canonical form. 

One method is to convert the non-canonical form into canonical SOP form and 

prepare the K-map. The other method is to convert the function into the standard 

SOP form and directly prepare the K-map.   

Consider the function 

 F = A/B + A/B/C/ + ABC/D + ABCD/                            

We notice that there are four variables in the expression.  The first term, A/B, 

containing two variables actually represents four minterms, and the term A/B/C/ 

represents two minterms.  The K-map for this function is  

A

D

B

C

1         1          0        0

1         1          1        0

0         1          0        0

 0         1          1        0 

 

Notice that the second column represents A/B, and similarly A/B/C/ represents the 

two top cells in the first column.  With a little practice it is always possible to fill the 

K-map with 1s representing a function given in the standard SOP form. 

Boolean functions in POS form 

Boolean functions, sometimes, are also available in POS form. Let us assume that 

the function is available in the canonical POS form. Consider an example of such a 

function   

 F = Π (0, 4, 6, 7, 11, 12, 14, 15)        

In preparing the K-map for the function given in POS form, 0s are filled in the cells 

represented by the maxterms.  The K-map of the above function is  



     

  
Sometimes the function may be given in the standard POS form.  In such situations 

we can initially convert the standard POS form of the expression into its canonical 

form, and enter 0s in the cells representing the maxterms.  Another procedure is to 

enter 0s directly into the map by observing the sum terms one after the other. 

Consider an example of a Boolean function given in the POS form. 

 F = (A+B+D/).(A/+B+C/+D).(B/+C)                            

This may be converted into its canonical form as  

F = (A+B+C+D/).(A+B+C/+D/)(A/+B+C/+D).(A+B/+C+D). (A/+B/+C+D). 

      (A+B/+C+D/).(A/+B/+C+D/)                   

               = M1 . M3 . M10 . M4 . M12 . M5 . M13       

The cells 1, 3, 4, 5, 10, 12 and 13 can have 0s entered in them while the remaining 

cells are filled with 1s.   

The second method is through direct observation. To determine the maxterms 

associated with a sum term we follow the procedure of associating a 0 with those 

variables which appear in their asserted form, and a 1 with the variables that appear 

in their non-asserted form. For example the first term (A+B+D/) has A and B 

asserted and D non-asserted.   Therefore the two maxterms associated with this sum 

term are 0001 (M1) and 0011 (M3).  The second term is in its canonical form and the 

maxterm associated with is 1010 (M10).  Similarly the maxterms associated with the 

third sum term are 0100 (M4), 1100 (M12), 0101 (M5) and 1101 (M13).  The resultant 

K-map is  



 

We learnt in this Learning Unit 

 The logic adjacency is captured as positional adjacency in a Karnaugh Map 

 How to translate logic expressions given in SOP or POS forms into K-maps 

 There are three types of logical adjacency, namely, simple, cyclic and symmetric 

adjacencies 



Minimization with Karnaugh Map 

Implicants: A Karnaugh map not only includes all the minterms that represent a Boolean 

function, but also arranges the logically adjacent terms in positionally adjacent cells.  As the 

information is pictorial in nature, it becomes easier to identify any patterns (relations) that 

exist among the 1-entered cells (minterms). These patterns or relations are referred to as 

implicants.   

Definition 1:  An implicant is a group of 2i (i = 0, 1 ....n) minterms (1-entered cells) that 

are logically (positionally) adjacent.   

A study of implicants enables us to use the K-map effectively for simplifying a Boolean 

function. Consider the K-map  

            

 There are four implicants: 1, 2, 3 and 4.  

 The implicant 4 is a single cell implicant.  A single cell implicant is a 1-entered cell 

that is not positionally adjacent to any of the other cells in map. 

 The four implicants account for all groupings of 1-entered cells. This also means that 

the four implicants describe the Boolean function completely.   

An implicant represents a product term, with the number of variables appearing in the term 

inversely proportional to the number of 1-entered cells it represents.   

 Implicant 1 in the figure represents the product term AC/  

 Implicant 2 represents ABD 

 Implicant 3 represents BCD  

 Implicant 4 represents A/B/CD/ 

The smaller the number of implicants, and the larger the number of cells that each 

implicant represents, the smaller the number of product terms in the simplified Boolean 

expression.   

In this example we notice that there are different ways of identifying the implicants.  



      

        

Five implicants are identified in the figure (a) and three implicants in the figure (b) for the 

same K-map (Boolean function).  It is then necessary to have a procedure to identify the 

minimum number of implicants to represent a Boolean function.  

We identify three types of implicants: "prime implicant", "essential implicant" and 

"redundant implicant".   

A prime implicant is one that is not a subset of any one of the other implicant.     

An essential prime implicant is a prime implicant which includes a 1-entered cell that is 

not included in any other prime implicant. 

A redundant implicant is one in which all the 1-entered cells are covered by other 

implicants. A redundant implicant represents a redundant term in an expression. 

Implicants 2, 3, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are prime 

implicants. 

Implicants 2, 4 and 5 in the figure (a), and 1, 2 and 3 in the figure (b) are essential prime 

implicants. 

Implicants 1 and 3 in the figure (a) are redundant implicants.   

Figure (b) does not have any redundant implicants.  

Now the method of K-map minimisation can be stated as  

"find the smallest  set  of  prime  implicants  that  includes  all the essential  prime 

implicants  accounting for all  the 1-entered cells of  the K-map".    

If there is a choice, the simpler prime implicant should be chosen. The minimisation 

procedure is best understood through examples. 

Example 1: Find the minimised expression for the function given by the K-map in the 

figure. 

 



 

Fifteen implicants of the K-map are: 

 X1 = C/D/ X2 = B/C/  X3 = BD/ X4 = ACD 

 X5 = AB/C/ X6 = BCD/  X7 = A/B/C/ X8 = BC/D/ 

 X9 = B/C/D/ X10 = A/C/D/  X11 = AC/D/ X12 = AB/D 

 X13 = ABC X14 = A/BD/  X15 = ABD/   X16 = B/C/D 

Obviously all these implicants are not prime implicants and there are several redundant 

implicants.  Several combinations of prime implicants can be worked out to represent the 

function.  Some of them are listed in the following. 

 F1 = X1 + X4 + X6 + X16  

      = X4 + X5 + X6 + X7 + X8 

      = X2 + X3 + X4  

      = X10 + X11 + X8 + X4 + X6 

The k-maps with these four combinations are  



      

 

 

Among the prime implicants listed in the figure there are three implicants X1, X2 and X3 

that  group  four  1-entered cells. Selecting the smallest number of implicants we obtain the 

simplified expression as: 

 F = X2 + X3 + X4              

    = B/C/ + BD/ + ACD                                       

It may be noticed that X2, X3 and X4 are essential prime implicants. 

Example 2:  Minimise the Boolean function represented by the K-map shown in the figure. 

 

Three sets of prime implicants are: 

 (a)  X1 = B/D/      X2 = A/B  X3 = BD X4 = ACD  

 (b)  X4 = ACD       X5 = AB/D/       X6 = A/B/D/ X7 = ABD 

       X8 = A/BC      X9 = A/BC/ 



  (c)  X7 = ABD       X10 = B/C/D/     X11 = A/C/D/ X12 = A/BD 

                 X13 = A/C/D/ X14 = AB/C 

    

Some of the simplified expressions are shown in the following: 

 F = X1 + X2 + X3 + X4                                       

     = X4 + X6 + X7 + X8 + X9   

  = X7 + X10 + X11 + X12 + X13 + X14              

Standard POS form from Karnaugh Map 

As mentioned earlier, POS form always follows some kind of duality, yet different from the 

principle of duality.   The implicants are defined  as groups of sums  or  maxterms  which  

in  the  map  representation  are  the positionally adjacent 0-entered cells rather then 1-

entered cells as in the  SOP case. When  converting an implicant  covering some 0-entered 

cells into  a sum,  a variable  appears  in complemented form in  the sum if it  is always 1  

in value in  the combinations corresponding   to  that  implicant,  a  variable   appears  in 

uncomplimented form if it is always 0  in value, and the variable does  not appear  at  all  if  

it  changes  its  values  in  the combinations corresponding to the implicant. We obtain a 

standard POS form of expression from the map representation by ANDing all the sums 

converted from implicants. 

Example 3:  Consider a Boolean function in the POS form represented in the K-map shown 



      

in the figure  

    

 Initially four implicants are identified (1, 2, 3 and 4). 

 Implicant 1: B is asserted and A is not-asserted in all the cells of implicant 1, where as 

the variables C and D change their values from 0 to 1.  It is represented by the sum 

term (A + B/).    

 Implicant 2: It is represented by the sum term (B/ + D/). 

 Implicant 3: It is represented by (B + D). 

 Implicant 4: It is represented by (A/ + C/ + D/). 

The simplified expression in the POS form is given by; 

 F = (A + B/) . (B/ + D/) . (B + D) . (A/ + C/ + D/)             

If we  choose the  implicant 5  (shown by the dotted line  in the figure 19) instead  of  4,  

the  simplified  expression  gets modified as: 

 F = (A + B/) . (B/ + D/).(B + D).(A/ + B +C'/)  

We may summarise the procedure for minimization of a Boolean function through a K-map 

as follows: 

1. Draw the K-map with 2n cells, where n is the number of variables in a Boolean function. 

2. Fill in the K-map with 1s and 0s as per the function given in the algebraic form (SOP or 

POS) or truth-table form. 

3. Determine the set of prime implicants that consist of all the essential prime implicants 

as per the following criteria: 

 All the 1-entered or 0-entered cells are covered by the set of implicants, while   

making the number of   cells covered by each implicant as large as possible. 

 Eliminate the redundant implicants.  

 Identify all the essential prime implicants.         

 Whenever   there is  a  choice  among  the  prime implicants  select the prime 



implicant  with  the  smaller  number of  literals. 

4. If the final expression is to be generated in SOP form, the prime implicants should be 

identified by suitably grouping the positionally adjacent 1-entered cells, and converting 

each of the prime implicant into a product term.  The final SOP expression is the OR of 

the identified product terms.  

5. If the final simplified expression is to  be given  in the POS form,  the prime implicants  

should  be  identified  by suitably grouping  the positionally   adjacent   0-entered   

cells,  and converting each  of  the prime implicant into  a  sum  term.  The final POS 

expression is the AND of the identified sum terms. 

Simplification of Incompletely Specified Functions 

So  far  we  assumed  that  the  Boolean  functions  are always completely specified, which  

means  a  given  function  assumes strictly  a  specific value, 1  or  0,  for  each  of  its  2n  

input combinations. This, however, is not always the case.  

Consider the example is the BCD decoders 

 The ten outputs are decoded from sixteen possible input combinations produced by 

four inputs representing BCD codes.    

 An encoding scheme chooses ten valid codes. 

 Irrespective of the encoding scheme there are always six combinations of the inputs 

that would be considered as invalid codes.  

 If the input unit to the BCD decoder works in a functionally correct way, then the six 

invalid combinations of the inputs should never occur.    

In such a case, it does not matter what the output of the decoder is for these six 

combinations.  As we do not mind what the values of the outputs are in such situations, we 

call them "don’t-care" situations. These don’t-care situations can be used advantageously in 

generating a simpler Boolean expression than without taking that advantage.  

Such don’t-care combinations of the variables are represented by an "X" in the appropriate 

cell of the K-map.   

Example:  This example shows how an incompletely specified function can be represented 

in truth-table, Karnaugh map and canonical forms. 

The decoder has three inputs A, B and C representing three bit codes and an output F.   Out 

of the 23 = 8 possible combinations of the inputs, only five are described and hence 

constitute the valid codes. F is not specified for the remaining three input codes, namely, 

000, 110 and 111.    

 

 



      

Functional description of a decoder 

Mode No Input Code Output Description 
1 
2 
3 
4 
5 

 0    0    1 
 0    1    0 
 0    1    1 
 1    0    0 
 1    0    1 

0 
0 
0 
1 
1 

Input from keyboard 
Input from mouse 
Input from light-pen 
Output to printer 
Output to plotter 

 

Treating these three combinations as the don’t-care conditions, the truth-table may be 

written as: 

A B C F 
0 0 0 X 
0 0 1 0 
0 1 0 0 

0 1 1 0 
1 0 0 1 
1 0 1 1 
1 1 0 X 
1 1 1 X 

 

The K-map for this function is  

       

The function in the SOP and POS forms may be written as 

 F = Σ(4, 5) + d (0, 6, 7) 

           F = Π (1, 2, 3) . d (0, 6, 7) 

The term d (0, 6, 7) represents the collection of don’t-care terms. 

The don’t-cares bring some advantages to the simplification of Boolean functions.  The Xs 

can be treated either as 0s or as 1s depending on the convenience. For example the above 

map can be redrawn in two different ways as  

 

The simplification can be done, therefore, in two different ways.  The resulting expressions 



for the function F are: 

   F = A                 

   F = AB/   

We can generate a simpler expression for a given function by utilising some of the don’t-

care conditions as 1s. 

Example:  Simplify F = Σ (0,1,4,8,10,11,12) + d(2,3,6,9,15) 

The K-map of this function is       

 

 The simplified expression taking the full advantage of the don’t cares is, 

 F = B/ + C/D/                                                

Simplification of several functions of the same set of variables 

As there could be several product terms that could be made common to more than one 

function, special attention needs to be paid to the simplification process.    

Example: Consider the following set of functions defined on the same set of variables: 

 F1 (A, B, C) = Σ (0, 3, 4, 5, 6)  

 F2 (A, B, C) = Σ (1, 2, 4, 6, 7)  

 F3 (A, B, C) = Σ (1, 3, 4, 5, 6)  

Let us first consider the simplification process independently for each of the functions. The 

K-maps for the three functions and the groupings are  

 

The resultant minimal expressions are: 

 F1 = B/C/ + AC/ + AB/ + A/BC      



      

 F2 = BC/ + AC/ + AB + A/B/C      

 F3 = AC/ + B/C + A/C       

These three functions have nine product terms and twenty one literals.   

If the groupings can be done to increase the number of product terms that can be shared 

among the three functions, a more cost effective realisation of these functions can be 

achieved.   One may consider, at least as a first approximation, cost of realising a function 

is proportional to the number of product terms and the total number of literals present in 

the expression.  Consider the minimisation shown in the figure 

  

 

The resultant minimal expressions are;           

    F1 = B/C/ + AC/ + AB/ + A/BC         

    F2 = BC/ + AC/ + AB + A/B/C         

    F3 = AC/ + AB/ + A/BC + A/B/C       

This simplification leads to seven product terms and sixteen literals. 
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Motivation

� Map methods unsuitable if the number of variables is 
more than six

� Quine formulated the concept of tabular minimisation in 
1952

� Improved by McClusky in 1956
Quine-McClusky method 
� Can be performed by hand, but tedious, time-consuming 

and subject to error 
� Better suited to implementation on a digital computer



December 2006 N.J. Rao     M2L4 3

Principle of Quine-McCusky Method

Quine-McClusky method is a two stage simplification process 
Step 1: Prime implicants are generated by a special 

tabulation process
Step 2: A minimal set of implicants is determined 
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Tabulation

� List the specified minterms for the 1s  of a function  and  
don�t-cares 

� Generate all the prime implicants using  logical 
adjacency (AB/ +  AB = A) 

One can work with the equivalent binary number of the 
product terms.   

Example:  A/BCD/ and A/BC/D/ are entered as 
0110    and    0100
Combined to form a term �01-0�
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Creation of Prime Implicant Table

� Selected prime implicants are combined and arranged 
in a table
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Example 1
F  =  S (1,2,5,6,7,9,10,11,14) 
The minterms are tabulated as binary numbers in 

sectionalised format.

7
11
14

3               0111
1011
1110

3

5
6
9

10

2              0101
0110
1001
1010

2

1
2

1              0001
0010

1

DecimalColumn 1
No.of 1s    Binary

Section
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Example 1 (2)

� Compare every binary number in each section  with  
every  binary number in the next section

� Identify the combinations where the two numbers differ 
from each other with respect to only one bit. 

� Combinations cannot occur among the numbers 
belonging to the same section

� Example:  0001 (1) in section 1 can be combined with 

0101 (5) in section 2 to result in 0-01 (1, 5).
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Example 1 (3)

� The results of such combinations are entered into 
another column

� The paired entries are checked off
� The entries  of  one section in the second column  can 

again  be combined  together with entries  in  the  next 
section

� Continue this process
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Example 1 (4)

3           0111  7
1011  11
1110   14

3

01-1      (5,7)
011- (6,7)
-110      (6,14) 
10-1      (9,11)
101- (10,11) 
1-10      (10,14) 

2          0101   5
0110   6
1001   9   
1010  10

2

--10   (2,6,10,14)
--10   (2,10,6,14)

1-01      (1,5)
-001      (1,9)
0-10      (2,6)   
-010      (2,10) 

1           0001   1
0010   2

1

Column 3Column 2Column 1
No.of 1s  Binary         Decimal

Section

Note: Combination of entries in column 2 can only take place if the 
corresponding entries have the dashes at the same place. 
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Example 1 (5)

� All those terms which are not checked off constitute the 
set of prime implicants

� The repeated terms should be eliminated (--10 in the 
column 3)

� The seven  prime  implicants:(1,5),  (1,9),  (5,7),  (6,7),  
(9,11), (10,11), (2,6,10,14)

� This is not a minimal set of prime implicants
� The next stage is to determine the minimal set of prime 

implicants
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Selection of minimal set of implicants

� Determine essential prime implicants
� These are the minterms not covered by any other prime 

implicant Identified by columns that have only one asterisk
� Columns 2 and 14 have only one asterisk each
� The associated row, CD/, is an essential prime implicant.  
� CD/ is selected as a member of the minimal set (mark it by an 

asterisk)
� Remove the corresponding columns, 2, 6, 10, 14, from the prime 

implicant table

� A new table is prepared.
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Selection of minimal set of 
implicants (2)
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Dominating Prime Implicants

� Identified by the rows that have more asterisks than 
others

� Choose Row A/BD 
� Includes the minterm 7, which is the only one included in 

the row represented by A/BC 
� A/BD is dominant implicant over A/BC
� A/BC can be eliminated  
� Mark A/BD by an asterisk
� Check off the columns 5 and 7 



December 2006 N.J. Rao     M2L4 15

Dominating Prime Implicants (2)

Choose AB/D 
 Dominates over the row AB/C
 Mark the row  AB/D by an asterisk 
 Eliminate the row AB/C  
 Check off columns 9  and  11 

Select A/C/D 
 Dominates over B/C/D. 
 B/C/D also dominates over A/C/D
 Either B/C/D or A/C/D can be chosen as the dominant 

prime implicant
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Minimal SOP expression

� If A/C/D is retained as the dominant prime implicant
F = CD/ + A/C/D + A/BD + AB/D      

� If  B/C/D is chosen as the dominant prime implicant
F = CD/ + B/C/D + A/BD + AB/D      

� The minimal expression is not unique
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Types of implicant tables

� Cyclic prime implicant table 
� Semi-cyclic prime implicant table
A prime implicant table is cyclic if
� it does not have any essential implicants which implies 

(at least two asterisks in every column) 
� there are no dominating implicants (same number of 

asterisks in every row
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Example: Cyclic prime implicants

F =  S (0,1,3,4,7,12,14,15)
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Example: Possible Prime Implicants

a = A/B/C/ (0,1)              e = ABC    (14,15)     
b = A/B/D  (1,3)               f = ABD/ (12,14)     
c = A/CD   (3,7)              g = BC/D/ (4,12)      
d = BCD    (7,15)            h = A/C/D/ (0,4)
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Example: Prime implicant table
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Process of simplification

� All columns have two asterisks 
� There are no essential prime implicants. 
� Choose any one of the prime implicants to start with
� Start with prime implicant a (mark with asterisk)
� Delete corresponding columns, 0 and 1
� Row c becomes dominant over row b, delete row b
� Delete columns 3 and 7 
� Row e dominates row d, and row d can be eliminated 
� Delete columns 14 and 15
� Choose row g it covers the remaining asterisks 

associated with rows h and f
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Example: Reduced Prime Implicants
Table

F

G

H

I

J

K
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Example: Simplified Expression

F = a + c + e + g  
=  A/B/C/ + A/CD + ABC + BC/D/

The K-map of the simplified function
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Semi-cyclic prime implicant table

� The number of minterms covered by each prime 
implicant is identical in cyclic function

� Not necessarily true in a semi-cyclic function
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Example: Semi-cyclic Prime Implicant
Table (Function of 5 variables)

x

(0,2,8,10)

(0,2,16,18)

(8,9,10,11)

(16,17,18,19)

(11,15)

(15,31)

(23,31)

(19,23)

(17,25)

(25,9)

x

a

b

c

e 

d

g

h

i

j

k

0 2 8 9 10 11 15 16 17 18 19 23 25 31

x

x x x x

x x

x x x x

x x x x

xx

x x

xx

x x

x x

x
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Example: Semi-cyclic Prime Implicant
Table (Function of 5 variables) (2)

Minimised Function
F = a + c + d + e + h + j   

or  F = a + c + d + g + h + j          
or F = a + c + d + g + j + i  
or F = a + c + d + g + i + k
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Simplification of Incompletely Specified 
Functions

� Do the initial tabulation including the don�t-cares
� Construct the prime implicant table
� Columns associated with don�t-cares need not be 

included 
� Further simplification is similar to that for completely 

specified functions
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Example

F(A,B,C,D,E) =(1,4,6,10,20,22,24,26) + 
d(0,11,16,27)

� Pay attention to the don�t-care terms
� Mark the combinations among themselves (d)
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Primary Implicant Table

-0-00 (0,4,16,20)
-0-00 (0,16,4,20)
----------------------
-01-0 (4,6,20,22)
-01-0 (4,20,6,22)
-------------------------
-101- (10,26,11,27)
-101- (10,11,26,27)

0000- (0,1)
00-00 (0,4) 
-0000 (0,16) (d)
--------------------
001-0 (4, 6)    
-0100 (4,20)   
10-00 (16,20) 
1-000 (16,24) 
---------------------
-0110 (6,22) 
-1010 (10,26) 
0101- (10,11) 
101-0 (20,22) 
110-0 (24,26)
----------------------
1101- (26,27) 
-1011 (11,27) 

0 
------------

1 
4 

16 
------------

6 
10 
20 
24 

-----------
22 
26 
11 

----------
27 

00000 (d)
--------------
00001
00100
10000 (d)
---------------
00110
01010
10100
11000
--------------
10110
11010
01011 (d)
---------------
11011 (d)
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Prime Implicant Table

a

b

c

d

e

g

x

(0,1)

(16,24)

(24,26)

(0,4,6,23)  

(4,6,20,22)

(10,11,26,27)

1 4 6 10 20 22 24 26

x

x x

x x

x x x x

x x

Don�t-cares are not included
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Minimal expression

F(A,B,C,D,E) = a + c + e + g                       
= A/B/C/D/  + ABC/E/ + B/CE/ + BC/D 



 

Quine-McCluskey Method of Minimization 

Karnaugh Map provides a good method of minimizing a logic function.  However, it depends 

on our ability to observe appropriate patterns and identify the necessary implicants.  If the 

number of variables increases beyond five, K-map or its variant Variable Entered Map can 

become very messy and there is every possibility of committing a mistake.  What we 

require is a method that is more suitable for implementation on a computer, even if it is 

inconvenient for paper-and-pencil procedures.  The concept of tabular minimisation was 

originally formulated by Quine in 1952.   This method was later improved upon by  

McClusky in  1956, hence the  name Quine-McClusky.   

This Learning Unit is concerned with the Quine-McClusky method of minimisation.  This 

method is tedious, time-consuming and subject to error when performed by hand.   But it is 

better suited to implementation on a digital computer. 

Principle of Quine-McClusky Method 

The Quine-McClusky method is a two stage simplification process.  

 Generate prime implicants of the given Boolean function by a special tabulation 

process. 

 Determine the minimal set of implicants is determined from the set of implicants 

generated in the first stage. 

The  tabulation  process starts  with a listing  of the specified minterms for the 1s  (or 0s)  

of a function  and  don’t-cares (the unspecified  minterms)  in a particular  format.   All  the 

prime implicants are  generated  from  them using  the  simple logical adjacency  theorem,  

namely,  AB/ +  AB = A.  The main feature of this stage is that we work with the equivalent 

binary number of the product terms.   For example in a four variable case, the minterms 

A/BCD/ and A/BC/D/ are entered as 0110 and 0100.   As  the two logically adjacent 

minterms A/BCD/ and A/BC/D/ can be combined to form a product term A/BD/,the two 

binary terms 0110 and 0100 are combined to form a term represented as "01-0",  where ‘-‘  

(dash) indicates the position where the combination took place. 

Stage two involves creating a prime implicant table.  This table provides a means of 

identifying, by a special procedure, the smallest number of prime implicants that represents 

the original Boolean function.   The selected prime implicants are combined to form the 

simplified expression in the SOP form. While we confine our discussion to the creation of 

minimal SOP expression of a Boolean function  in  the  canonical  form,  it  is  easy  to  

extend the procedure  to  functions that  are given in  the standard  or any other forms. 

Generation of Prime Implicants 

The process of generating prime implicants is best presented through an example.   

Example 1:  F  =  Σ (1,2,5,6,7,9,10,11,14) 
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All the minterms are tabulated as binary numbers in sectionalised format, so that each 

section consists of the equivalent binary numbers containing the same number of 1s, and 

the number of 1s in the equivalent binary numbers of each section is always more than that 

in its previous section. This process is illustrated in the table as below. 

Section    Column 1 
No. of 1s    Binary 

Decimal 

1    1              0001 
0010  

1 
2 

2    2              0101 
                   0110 
                   1001 
                   1010 

5 
6 
9 
10 

3   3               0111 
                   1011 
                   1110 

7 
11 
14 

 

The next step is to look for all possible combinations between the equivalent binary 

numbers in the adjacent sections by comparing every binary number in each section with 

every binary number in the next section.  The combination of two terms in the adjacent 

sections is possible only if the two numbers differ from each other with respect to only one 

bit. For example 0001 (1) in section 1 can be combined with 0101 (5) in section 2 to result 

in 0-01 (1, 5). Notice that combinations cannot occur among the numbers belonging to the 

same section. The results of such combinations are entered into another column, 

sequentially along with their decimal equivalents indicating the binary equivalents from 

which the result of combination came, like (1, 5) as mentioned above.  The second column 

also will get sectionalised based on the number of 1s.  The entries  of  one section in the 

second column  can again  be combined  together with entries  in  the  next section, in  a  

similar  manner.  These combinations are illustrated in the Table below 

Section             Column 1 
No.of 1s       Binary         
Decimal 

Column 2 Column 3 

1    1             0001             1 
                  0010             2 

2    2                0101               5 
                     0110               6 
                     1001               9    
                     1010             10 

3   3                 0111               7 
                     1011             11 
                     1110             14 

1-01          (1,5) 
-001          (1,9) 
0-10          (2,6)    
-010          (2,10)    
 
 
 
01-1         (5,7) 
011-         (6,7) 
-110         (6,14)    
10-1         (9,11) 
101-         (10,11)  
1-10         (10,14)   

--10     (2,6,10,14) 
--10     (2,10,6,14) 

 
All the entries in the column which are paired with entries in the next section   are   

checked   off.    Column 2 is again sectionalised with respect t the number of 1s.   Column 3 



 

is generated by pairing off entries in the first section of the column 2 with those items in 

the second section.  In principle this pairing could continue until no further combinations 

can take place.   All those entries that are paired can be checked off.  It may be noted that 

combination of entries in column 2 can only take place if the corresponding entries have the 

dashes at the same place.  This rule is applicable for generating all other columns as well.  

After the tabulation is completed, all those terms which are not checked off constitute the 

set of prime implicants of the given function.  The repeated terms, like --10 in the column 

3, should be eliminated.  Therefore,  from the above tabulation procedure, we  obtain  

seven  prime  implicants  (denoted by  their decimal equivalents)  as (1,5),  (1,9),  (5,7),  

(6,7),  (9,11), (10,11), (2,6,10,14).   The next stage is to determine the minimal set of 

prime implicants. 

Determination of the Minimal Set of Prime Implicants 

The prime implicants generated through the tabular method do not constitute the minimal 

set.  The prime implicants are represented in so called "prime implicant table". Each column 

in the table represents a decimal equivalent of the minterm. A row is placed for each prime 

implicant with its corresponding product appearing to the left and the decimal group to the 

right side.  Asterisks are entered at those intersections where the columns of binary 

equivalents   intersect   the   row that   covers them.  The prime implicant table for the 

function under consideration is shown in the figure.  

 
In the selection of minimal set of implicants, similar to that in a K-map, essential implicants 

should be determined first.  An essential prime implicant in  a  prime  implicant  table  is  

one  that covers (at least  one) minterms which are not covered  by any other prime 

implicant.  This can be done by looking for that column that has only one asterisk.   For 

example, the columns 2 and 14 have only one asterisk each.   The associated row, 

indicated by the prime implicant CD/, is an essential prime implicant. CD/ is selected as a 
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member of the minimal set (mark that row by an asterisk).  The corresponding columns,  

namely  2,  6,  10,  14,  are also  removed from the prime implicant  table,  and a new 

table is construction as  shown  in  the  figure. 

 
We then select dominating prime implicants, which are the rows that have more asterisks 

than others.   For example, the row A/BD includes the minterm 7, which is the only one 

included in the row represented by A/BC.  A/BD is dominant implicant over A/BC, and hence 

A/BC can be eliminated.   Mark A/BD by an asterisk and check off the column 5 and 7.   

We then choose AB/D as the dominating row over the row represented by AB/C.  

Consequently, we mark the row AB/D by an asterisk, and eliminate the row AB/C and the 

columns 9 and 11 by checking them off.  

Similarly, we select A/C/D as the dominating one over B/C/D.  However, B/C/D can also be 

chosen as the dominating prime implicant and eliminate the implicant A/C/D.    

Retaining A/C/D as the dominant prime implicant the minimal set of prime implicants is 

{CD/, A/C/D, A/BD and AB/D).   The corresponding minimal SOP expression for the Boolean 

function is: 

 F = CD/ + A/C/D + A/BD + AB/D       

If we choose B/C/D instead of A/C/D, then the minimal SOP expression for the Boolean 

function is: 

 F = CD/ + B/C/D + A/BD + AB/D       

This indicates that if the selection of  the  minimal  set  of prime implicants is  not unique,  

then the minimal expression is also not unique. 

There are two types of implicant tables that have some special properties. One is referred 

to as cyclic prime implicant table, and the other as semi-cyclic prime implicant table. A 

prime implicant table is considered to be cyclic if 



 

1. it does not have any essential implicants which implies  that there are at least two 

asterisks in every column, and  

2. There are no dominating implicants, which implies that there are same number of 

asterisks in every row. 

Example 2: A Boolean function with a cyclic prime implicant table is shown in the figure 3.  

The function is given by 

 F =  Σ (0, 1, 3, 4, 7, 12, 14, 15) 

All possible prime implicants of the function are: 

 a = A/B/C/  (0,1)                       e = ABC    (14,15)       

 b = A/B/D  (1,3)                       f = ABD/    (12,14)       

 c = A/CD   (3,7)                       g = BC/D/   (4,12)         

 d = BCD    (7,15)                      h = A/C/D/ (0,4) 

     
As it may be noticed from the prime implicant table in the figure that all columns have two 

asterisks and there are no essential prime implicants.  In such a case we can choose any 

one of the prime implicants to start with.  If we start with prime implicant a, it can be 

marked with asterisk and the corresponding columns, 0 and 1, can be deleted from the 

table.  After their removal, row c becomes dominant over row b, so that row c is selected 

and hence row b is can be eliminated.   The columns 3 and 7 can now be deleted.  We 

observe then that the row e dominates row d, and row d can be eliminated.   Selection of 

row e enables us to delete columns 14 and 15. 
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If, from the reduced prime implicant table shown in the figure, we choose row g it covers 

the remaining asterisks associated with rows h and f.  That covers the entire prime 

implicant table.  The minimal set for the Boolean function is given by: 

 

 

 
 

 

 
 F = a + c + e + g   

             =  A'B'C' + A'CD + ABC + BC'D' 

  The K-map of the simplified function is shown in the following figure  

       
A semi-cyclic prime implicant table differs from a cyclic prime implicant table in one respect.   

In the cyclic case the number of minterms covered by each prime implicant is identical.    In 

a semi-cyclic function this is not necessarily true. 



 

Example 3: Consider a semi-cyclic prime implicant table of a five variable Boolean function 

shown in the figure. 

 
      

 
Examination of the prime-implicant table reveals that rows a, b, c and d contain four 

minterms each.  The remaining rows in the table contain two asterisks each.  Several 

minimal sets of prime implicants  can be selected.  Based on the procedures presented 

through the earlier examples, we find the following candidates for the minimal set: 

      F = a + c + d + e + h + j    

       or  F = a + c + d + g + h + j           

       or  F = a + c + d + g + j + i   

       or  F = a + c + d + g + i + k       

Based on the examples presented we may summarise the procedure for determination of 

the minimal set of implicants: 

1. Find, if any, all the essential prime implicants, mark them with *, and remove the 

corresponding rows and columns covered by them from the prime implicant table. 

2. Find, if any, all the dominating prime implicants, and remove all dominated prime  

implicants  from  the  table  marking  the dominating implicants with *s. Remove the 

corresponding rows and columns covered by the dominating implicants. 

3. For cyclic or semi-cyclic prime implicant table, select any one prime implicant as the 

dominating one, and follow the procedure until the table is no longer cyclic or semi-

cyclic. 

4. After covering all the columns, collect all the * marked prime implicants together to 

form the minimal set, and convert them to form the minimal expression for the 

function. 
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Simplification of Incompletely Specified functions 

The simplification  procedure  for  completely   specified  functions presented in  the  earlier   

sections  can  easily   be  extended  to incompletely specified functions. The initial 

tabulation is drawn up including the dont-cares. However, when the prime implicant table is 

constructed, columns associated with dont-cares need not be included because they do not 

necessarily have to be covered.  The remaining part of the simplification is similar to that 

for completely specified functions. 

Example 4: Simplify the following function: 

 F(A,B,C,D,E) =∑(1,4,6,10,20,22,24,26) + d(0,11,16,27) 

Tabulation of the implicants    

00000 (d) 
 
00001 
00100 
10000 (d) 
 
00110 
01010 
10100 
11000 
 
10110 
11010 
01011 (d) 
 
11011 (d) 
 

     0  
      
     1  
     4  
    16  
 
      6  
    10  
    20  
    24  
     
    22  
    26  
    11  
 
    27  

0000- (0,1) 
00-00 (0,4)  
-0000 (0,16) (d) 
 
001-0 (4, 6)     
-0100 (4,20)    
10-00 (16,20)  
1-000 (16,24)  
 
-0110 (6,22)  
-1010 (10,26)  
0101- (10,11)  
101-0 (20,22)  
110-0 (24,26) 
 
1101- (26,27)  
-1011 (11,27)  
 

-0-00 (0,4,16,20) 
-0-00 (0,16,4,20) 
 
-01-0 (4,6,20,22) 
-01-0 (4,20,6,22) 
 
-101- (10,26,11,27) 
-101- (10,11,26,27) 

 
Pay attention to the don’t-care terms as well as to the combinations among themselves, by 

marking them with (d). 

Six binary equivalents are obtained from the procedure.   These are 0000- (0,1),  1-000  

(16,24), 110-0 (24,26), -0-00 (0,4,16,20), -01-0 (4,6,20,22) and -101-  (10,11,26,27)  

and  they  correspond to the following prime implicants: 

 a = A/B/C/D//    b = AC/D/E/    c = ABC/E/   

d = B/D/E/     e = B/CE/   g = BC/D 
The prime implicant table is plotted as shown in the figure.   



 

 
 
It may be noted that the don’t-cares are not included. 
The minimal expression is given by: 

 F(A,B,C,D,E) = a + c + e + g                        
                    = A'B'C'D' + ABC'E' + B'CE' + BC'D     
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Logic families

A logic family is characterized by
� Its circuit configuration 
� Its  technology 
� Specific optimization of a set of desirable properties  
Many logic families were introduced into the market since 

the introduction of integrated circuits in 1960s.  
Some of the IC families had very short life spans.  
� Standard TTL family which dominated the IC market got 

superseded by the Low Power Schottky family.  
� Necessary to be aware of the evolving technologies



December 2006 N.J.Rao      M3L1 3

Features of a Logic Family

� Logic flexibility
� Availability of complex functions
� High noise immunity 
� Wide operating temperature range
� Loading
� Speed
� Low power dissipation
� Lack of generated noise
� Input and output structures
� Packaging
� Low cost
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Logic Flexibility

It is a measure of the capability and versatility or the 
amount of work or variety of uses that can be obtained 
from a logic family.  

Factors that enhance the logic flexibility
 Wired-logic capability 
 Asserted/ not-asserted outputs 
 Driving capability
 I/O interfacing 
 Driving other logic families
 Multiple gates
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Complex Functions

� A complex function represents a grouping of basic gates 
requiring a relatively high level of integration.  

� As complexity increases, the number of input/output pins 
also increases - but usually at a decreasing rate.  

� High pin count gives the benefit of decreasing assembly 
costs per gate while increasing the reliability per gate.  

� The complexity is also measured in terms of gates per 
chip.
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Noise Immunity

High immunity to noise is desired to prevent the occurrence 
of false logic signals in a system.  

Common sources of noise:
� Variations of the dc supply voltage, 
� Ground noise
� Excessive coupling between signal leads
� Magnetically coupled voltages from adjacent lines, 
� External sources (relays, circuit breakers, and power line 

transients) 
� Radiated signals  
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Measures of Noise Immunity

� Voltage noise immunity (noise margin) is the amount of 
voltage that can be added algebraically to the worst-case 
output level before a worst-case gate tied to that output 
will begin to switch.

� Noise immunity is specified in terms of millivolts or volts
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DC Noise Margin

It is a measure of its noise immunity, a gate�s ability to 
withstand dc input signal variations.  
 VIL: Low level input voltage
 VIH: High level input voltage
 VOL: Low level output voltage
 VOH High level output voltage

Voltage levels associated with logic High and logic Low 
levels are not single values but a band of values. 
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DC Noise Margin (2)

A gate may accept an input signal in the range of 0.0 V to 
0.8 V as logic Low while it produces at its output a Low 
voltage of 0.4 V under worst loading and voltage supply 
conditions.  

DC margin is considered to be 0.4 V (0.8 - 0.4 = 0.4 V) 
The dc noise margins are defined as

Low level dc noise margin: VILmax- VOLmax

High level dc noise margin: VOHmin - VIHmin
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DC Noise Margin (3)
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AC Noise Margin

� It refers to the immunity of a gate to noise of very short 
durations.  

� Amplitude and duration of the noise signals become 
important.  

� The noise signal must contain enough energy to effect a 
change in the state of the circuit.  

� AC noise margins are higher than dc noise margins.
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AC Noise Margin (2)

The ability of a logic element to operate in a noisy 
environment depends on

� Built-in operating margins
� Time required for the device to react
� The ease with which a noise voltage is developed
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Operating Temperature Range

� For commercial and industrial needs, temperatures 
usually range from 0o or -30o C to 55o, 70o or 85o C

� The military has an universal requirement for operability 
from -55o C to 125o C.

� Advantages of a wide temperature specification are 
offset by the increased cost
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Loading

� The output of a logic gate may be connected to the 
inputs of several other similar gates

� The fan out of a gate is the maximum number of inputs 
of the same IC family that the gate can drive while 
maintaining its output levels within specified limits.  



December 2006 N.J.Rao      M3L1 15

Loading

The input and output loading parameters are normalized, with 
regard to TTL devices

1 TTL Unit Load (U.L.) = 40 A in the High state (Logic �1�)
1 TTL Unit Load (U.L.) = -1.6 mA in the Low state (Logic �0�)

The output of 74LS00 will sink 8.0 mA in Low state and source 
400 A in the High state.  

� The normalized output Low drive factor is: (8.0/1.6) = 5 U.L.

� Output High drive factor is: (400 A/40 A) = 10 U.L.
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Speed

� The shorter the propagation delay, the higher the speed 
of the circuit 

� Propagation delay of a gate:
time interval between the application of an input pulse 
and the occurrence of the resulting output pulse. 
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Propagation Delays

Two propagation delays associated with a logic gate:
tPHL: The time between a specified reference point on the 
input pulse and a corresponding reference point on the 
output pulse, with the output changing from the High 
level to the Low level.
tPLH: The time between specified reference point on the 
input pulse and a corresponding reference point on the 
output pulse, with the output changing from the Low level 
to the High level.
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Speed
The reference points are chosen as the 50% of the leading 
and trailing edges of the wave forms, or the threshold 
voltage (where the input and output voltages of the gate are 
equal) point.  

A B

A

B

tPHL

t PLH
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Power Dissipation

Low power dissipation is desired in large systems as it 
leads to

� Lower cooling costs 
� Lower power supply and distribution costs, 
� Reduction in mechanical design problems 
� Decrease in power dissipation on a per-gate basis with 

higher integration levels
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Steady state dissipation

DC supply voltage VCC x Average supply current ICC

� Value of ICC for a Low gate output is higher than for a 
High output

� Manufacturer's data sheet usually specifies both these 
values as ICCL and ICCH.  

� The average ICC is then determined based on a 50% 
duty cycle operation of the gate
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Dissipation during transitions

� The supply current drawn is generally very different 
during the transition times

� More number of active devices come into operation, and 
parasitic capacitors will have to be charged and 
discharged.  

� Power dissipation increases linearly as a function of the 
frequency of switching.
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Dissipation during transitions (2)

Speed-power product (SPP) is specified by the 
manufacturer

SSP is specified in terms of pico Joules (symbolized 
by pJ) 

SPP of a 74HC CMOS gate at 100 KHz is 
SPP = (8ns) x (0.17 mW) = 1.36 pJ.
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Generated Noise

� Switching transients either on power line or signal line 
can be very serious sources of noise.  

� Care has to be taken to design the power, ground and 
signal interconnections.  

� All the power supply leads in a system must be 
bypassed.  

� Supply distribution is less expensive if the circuits 
generate less noise.
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Input and output structures

Effective interfacing both at the input and output are 
needed

Interfacing at the input requires facility 
� To accept different voltage levels for the two logic states
� To accept signals with rise and fall times very different 

from those of the signals associated with that logic family  
At the output we require
� Larger current driving capability 
� Facility to increase the voltages associated with the two 

logic levels 
� Ability to tie the outputs of gates to have wired logic 

operations 
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Interfacing at the inputs and outputs

� Interfacing the slow varying signals is achieved through 
Schmitt triggers.  

� Voltage levels of the output signals can be increased by 
providing open-collector configurations.  Open-collector 
configurations also permit us to achieve wired-logic 
operations

� The outputs of gates can be tied together by having 
tristate outputs. 
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Schmitt Trigger Inputs
When a slow changing signal superposed with noise 
is applied to gate
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Three-State Outputs

� Logic outputs have two normal states; Low and High
� It is desirable to have another electrical state in which 

the output of the circuit offers very high impedance, high-
impedance, Hi-z or floating state

� In this state, the circuit is effectively disconnected at its 
output, except for a small leakage current.  

� Three states: logic 0, logic 1, and Hi-z.  
� An output with three possible states is called tri-state 

output.  
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Three-State Outputs (2)

� Devices with three state outputs, should have an extra 
input, called as �output enable� (OE) for placing a device 
in low-impedance or high-impedance states.  

� The outputs of devices which can have three states can 
be tied together, to create a three-state bus.  

� The control circuitry must enable that at any given time 
only one output is enabled while all other outputs are 
kept in high-z state.
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Open-Collector (or Drain) Outputs

� An IC device has a pull-up resistor at its output transistor 
� Such circuits prevent us from tying the outputs of two 

such devices together.  
If the internal pull-up elements are removed, then it allows 

one to
� tie up the outputs of more than one device together 

connect external pull-up resistor to increase the output 
voltage swing.  

Devices with open-collector (open-drain) outputs are very 
useful for

� Creating wired logic operations, or 
� Interfacing loads which are incompatible with the 

electrical characteristics of the logic family.  
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Packaging

� Initially most of the digital ICs were made available in 
dual-in-line packages (DIP).

� Commercial ICs come in plastic DIPs
� Ceramic DIPs are used for operation over a larger 

temperature range
� Increasing integrations lead to a wide range of chip level 

packages
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Cost

Often the most important one, is the cost of a logic family.  
It is not sufficient to compare the cost of logic families at 
gate level.
The total system cost is decided by

�Cost of ICs 
�Cost printed wiring board 
on which the ICs are 
mounted 
� Assembly of circuit board        
� Programming the 
programmable devices  
�etc. 

� Procurement
� Testing
� Power supply
� Documentation
� Storage 



PROPERTIES OF A LOGIC FAMILY 

Since the introduction of integrated circuits in 1960s, many logic families were 

introduced into the market.  Each logic family is characterised by  

 a circuit configuration  

 a particular semiconductor technology  

 a specific optimisation of a set of desirable properties 

Some of the IC families had very short life spans.  With continuously changing 

technologies, ICs that were quite popular suddenly become unattractive and 

uneconomical.  For example Standard TTL family which dominated the IC market   

for a long period got superseded by the Low Power Schottky family.  A digital 

designer should not only have a good knowledge of the existing digital families but 

should also be aware of the trends as well.  The major requirements and the 

desirable features of a logic family are: 

 Logic flexibility 

 Availability of complex functions 

 High noise immunity  

 Wide operating temperature range 

 Loading 

 Speed 

 Low power dissipation 

 Lack of generated noise 

 Input and output structures 

 Packaging 

 Low cost 

Logic Flexibility 

Logic flexibility is a measure of the capability and versatility or the amount of work 

or variety of uses that can be obtained from a logic family, in other words, it is a 

measure of the utility of a logic family in meeting various system needs.  Factors 

that enhance the logic flexibility are wired-logic capability, asserted/not-asserted 

outputs, line driving capability, indicator driving, I/O interfacing, driving other logic 

families and multiple gates.  

Wired logic refers to the capability of tying the outputs of gates together to perform 

additional logic without extra hardware and components.  Frequently, asserted/not-



asserted versions of a variable are required in a logic system.  If the logic family has 

gates with not-asserted outputs, use of inverters can be avoided.  If the circuits can 

drive non-standard loads such as long signal lines, lamps and indicator tubes, 

additional discrete circuits can be avoided. The gate count can be minimised in a 

digital system if AND, NAND, OR, NOR and EX-OR gates are all available in the 

family.  The logic families currently popular, namely TTL, CMOS and to a limited 

extent ECL, in the market have similar logic flexibility, and as such this factor does 

not constitute a deciding issue in selecting a logic family. 

Complex Function   

A complex function may be described as a grouping of basic gates requiring a 

relatively high level of integration.  As complexity increases, the number of 

input/output pins also increases - but usually at a decreasing rate.  Gate-to-pin 

ratios that normally increase with complexity give the benefit of decreasing assembly 

costs per gate while increasing the reliability per gate.  The complexity is also 

measured, at present, by the number of gates that can be offered in a 

programmable logic device or programmable gate array. 

Noise Immunity   

In order to prevent the occurrence of false logic signals in a system, high immunity 

to noise is desired.  Common sources of noise in digital circuits are  

 Variations of the dc supply voltage  

 Ground noise  

 Excessive coupling between signal leads 

 Magnetically coupled voltages from adjacent lines  

 External sources such as relays, circuit breakers, and power line transients  

If the noise immunity is higher, the number of precautions required to prevent the 

false logic signals will also be less.  This becomes an important advantage in those 

areas, such as in industrial logic control systems that are subject to high noise levels.  

At present with increasing use of electronic control systems even in household 

appliances, the ambient noise levels at homes have significantly risen.  Voltage noise 

immunity, or noise margin, is normally specified in terms of millivolts or volts.  The 

noise immunity is specified as the amount of voltage that can be added algebraically 

to the worst-case output level before a worst-case gate tied to that output will begin 

to switch. 



DC Noise Margin: The dc noise margin of a logic gate is a measure of its noise 

immunity, a gate’s ability to withstand dc input signal variations.  The term dc noise 

margin applies to noise voltages of relatively long duration compared to the gate’s 

response times.  The dc noise margin is defined in terms of the following voltage 

levels associated with a gate; 

 VIL:  Low level input voltage 

 VIH:  High level input voltage 

 VOL: Low level output voltage 

 VOH: High level output voltage 

Voltage levels associated with logic High and logic Low levels are not single values 

but a band of values.   

For example, a gate may accept an input signal in the range of 0.0 V to 0.8 V as 

logic Low while it produces at its output a Low voltage of 0.4 V under worst loading 

and voltage supply conditions.   

In such a situation 0.4 V (0.8 - 0.4 = 0.4 V) is considered to be the dc noise margin. 

When the output of one gate is connected to the input of another gate, as the output 

is limited to 0.4 V even if a noise voltage up to 0.4 is superimposed on it, the second 

gate would accept it as logic Low signal.   

The dc noise margins are defined as 

 Low level dc noise margin: VILmax- VOLmax 

 High level dc noise margin:  VOHmin - VIHmin 

The noise margins and the voltage levels associated with the gates can be 
graphically shown as in the figure. 
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AC Noise Margin: The term ac noise margin refers to the noise immunity of a gate 

to noise of very short durations.  In short duration noise, both the amplitude and 

duration of the noise signals become important.  The noise signal must contain 

enough energy to effect a change in the state of the circuit.  Therefore, the ac noise 

margins are considerably higher than dc noise margins. 

The ability of a logic element to operate in a noisy environment involves more than 

the dc and ac noise margins.  To be a problem, an externally generated noise pulse 

must be received into the system and cause malfunction.  The noise voltage must be 

introduced into the circuit by radiated or coupled means.  The amount of noise power 

required to develop a given voltage is strictly a function of the circuit impedances.  

Noise power must be transferred from the noise source with some arbitrary 

impedance, through a coupling to the impedance of the circuit under consideration.  

The ability to operate in a noisy environment is, then, an interaction of the built-in 

operating margins, the time required for the device to react, and the ease with which 

a noise voltage is developed. Therefore, the noise rejection capabilities of a logic 

family represent a combination of a number of circuit parameters. 

Operating Temperature Range 

A wide operating range is always desired and is often a design requirement.   

For commercial and industrial needs, temperatures usually range from 0o C or -30o C 

to 55o C, 70o C or 85o C.   

The military has a universal requirement for operability from -55o C to 125o C.   

In most cases a logic line specified from -55o C to 125o C will exhibit better 

characteristics at room temperature conditions than a line specified by commercial 

requirements.  It means performance of a logic circuit with regard to fan out, noise 

immunity and tolerance to power supply variations is usually better, since the circuits 

must still be within specifications even when the inherent degradation due to 

temperature extremes occurs.  The advantages of a wide temperature specification 

are often offset by the increased cost. 

Loading 

In digital systems many digital ICs are interconnected to perform different functions.  

The output of a logic gate may be connected to the inputs of several other similar 

gates so the load on the driving gate becomes an important factor.  The fan-out of a 

gate is the maximum number of inputs of ICs from the same IC family that the gate 



can drive while maintaining its output levels within specified limits.  In other words, 

the fan-out specifies the maximum loading that a given gate is capable of handling. 

The input and output loading parameters are generally normalised, with regard to 

TTL devices, to the following values. 

 1 TTL Unit Load (U.L.) = 40 µA in the High state (Logic “1”) 

 1 TTL Unit Load (U.L.) = -1.6 mA in the Low state (Logic “0”) 

For example the output of 74LS00 will sink 8.0 mA in Low state and source 400 µA in 
the High state.   

The normalised output Low drive factor is: 

 (8.0/1.6) = 5 U.L. 

The output High drive factor is: 

 (400/40) = 10 U.L. 
 
Speed 

Propagation delay is a very important characteristic of logic circuits because it limits 

the speed (frequency) at which they can operate.  The shorter the propagation 

delay, the higher the speed of the circuit.   

The propagation delay of a gate is basically the time interval between the application 

of an input pulse and the occurrence of the resulting output pulse.  

There are two propagation delays associated with a logic gate: 

1. tPHL: The time between a specified reference point on the input pulse and a 

corresponding reference point on the output pulse, with the output changing 

from the High level to the Low level. 

2. tPLH: The time between specified reference point on the input pulse and a 

corresponding reference point on the output pulse, with the output changing 

from the Low level to the High level. 

The reference points on the wave forms with respect to which the time delays are 

measured can be chosen as  

The 50% of the leading and trailing edges of the wave forms 

or  

The threshold voltage (where the input and output voltages of the gate are equal) 

point.   



These propagation delays are illustrated in the figure for both inverted and non-

inverted outputs, with 50% point taken as the reference. 

  
 
 
 
 
 
 
 
 

 
Power Dissipation 

Logic with low power dissipation is desired in large systems because it lowers cooling 

costs, and power supply and distribution costs, thereby reducing mechanical design 

problems as well. In an air-borne or satellite application, power dissipation may be 

the most critical parameter because of power-source limitations.  As chip complexity 

and packaging density continue to increase, power dissipation will decrease on a per-

gate basis, but will increase per-chip basis.  This is dictated by heat dissipation 

restriction arising from system design and maximum allowable semiconductor 

junction temperatures. 

The power dissipation of a logic gate is 

dc supply voltage VCC x the average supply current ICC 

Normally, the value of ICC for a Low gate output is higher than for a High output. The 

manufacturer's data sheet usually specifies both these values as ICCL and ICCH.  The 

average ICC is then determined based on a 50% duty cycle operation of the gate. 

The supply current drawn is generally very different during the transition time than 

during the steady state operation in logic High or Low states.  During the transition 

times more number of active devices is likely to come into operation, and parasitic 

capacitors will have to be charged and discharged.  Therefore, there is more 

dissipation every time a logic circuit switches its state.  It also means that the power 

dissipation increases linearly as a function of the frequency of switching.  A gate that 

operates at higher frequency will dissipate more power than the same gate operating 

at a lower frequency.  This phenomenon will have a significant effect on the design of 

high frequency circuits.   

A B
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B
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In view of this another parameter known as speed-power product (SPP) is specified 

by the manufacturer as a measure of the performance of a logic circuit based on the 

product of the propagation delay time with the power dissipation at a specified 

frequency.   

The speed-power product is specified in terms of pico Joules, symbolised by pJ.   

For example, the SPP of a 74HC CMOS gate at 100 KHz is  

  SPP = (8ns) x (0.17 mW) = 1.36 pJ. 

Generated Noise 

The switching transients either on power line or signal line can be very serious 

sources of noise. They can conduct and radiate through different channels and 

influence the functioning of the near by circuits or systems. Therefore, the lack of 

generated noise is an important requirement of a logic family.  When the switching 

noise is significant, special care has to be taken to design the power, ground and 

signal interconnections.   

 All the power supply leads in a system must be bypassed.   

 Power supply and ground distribution has to be carefully designed.   

Supply distribution is less expensive if the logic family generates minimal noise.  

Also, the maximum line lengths in the back plane and wiring on the printed wiring 

board are functions of cross talk generated by the logic family. A logic family that 

draws constant current in both logic Low and High states, and does not change 

supply current when switching states will generate less noise. 

Input and output Structures 

A logic family should provide features for effective interfacing both at the input and 

output.  Interfacing at the input requires facility to accept different voltage levels for 

the two logic states, and to accept signals with rise and fall times very different from 

those of the signals associated with that logic family.  At the output we require larger 

current driving capability, facility to increase the voltages associated with the two 

logic levels, and the ability to tie the outputs of gates to have wired logic operations.  

Interfacing the slow varying signals (signals with rise and fall times greater than one 

microsecond) is achieved through Schmitt triggers.  Voltage levels of the output 

signals can be increased by providing open-collector (or open-drain) configurations.  



Such open-collector (open-drain) configurations also permit us to achieve wired-logic 

operations.  The outputs of gates can be tied together by having tristate outputs.   

Schmitt Trigger Inputs: When a slow changing signal superposed with noise is 

applied to a gate which has a single threshold VT, there is a possibility of the output 

changing several times during signal transition period, as shown in the figure (b). 

Clearly, such a response is not acceptable.  When the input signal to a gate has long 

transition times, the gate is likely to stay in the linear region of its operation for a 

long period.  During this period the gate is likely to get into oscillations because of 

the parasitics associated with the circuit, which are not desirable. The problems 

associated with slow changing signals and the superposed noise can be solved if the 

gate has Schmitt trigger type of input. 
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A Schmitt trigger is a special circuit that uses feedback internally to shift the 

switching threshold depending on whether the input is changing from Low to High or 

from High to Low.  For example, suppose the input of a Schmitt-trigger inverter is 

initially at 0 V (solid Low) and the output is High close to the VCC (or VDD).  If the 

input voltage is increased, the output will not go Low until the input voltage reaches 

a threshold voltage, VT.  Any value of the input voltage above this threshold will 

make the output to remain Low.    The output of a Schmitt gate for a slow changing 

noisy signal is shown in the figure (c).  Every logic family should have a few gates 

which provide for Schmitt inputs to effectively interface with real world signals. 



Three-State Outputs: Logic outputs have two normal states, Low and High, 

corresponding to logic values 0 and 1.  It is desirable to have another electrical 

state, not a logic state at all, in which the output of the circuit offers very high 

impedance.  In this state, it is equivalent to disconnecting the circuit at its output, 

except for a small leakage current.  Such a state is called high-impedance, Hi-z or 

floating state.  Thus we have an output that could go into one of the three states: 

logic 0, logic 1 and Hi-z.  An output with three possible states is called tri-state 

output.   

Devices that have three state outputs, should have an extra input signal, that can be 

called as “output enable” (OE) for placing the device either in low-impedance or 

high-impedance states.  The outputs of devices which can have three states can be 

tied together, to create a three-state bus.  The control circuitry must enable that at 

any given time only one output is enabled while all other outputs are kept in Hi-z 

state. 

Open-Collector (or Drain) Outputs:   The collector terminal of a transistor (or the 

drain terminal of a MOSFET) is normally connected in a logic device to a pull-up 

resistor or a special pull-up circuit.  Such circuits prevent us from tying the outputs 

of two such devices together.  If the internal pull-up elements are removed, then it 

gives freedom to the designer to tie up the outputs of more than one device 

together, or to connect external pull-up resistor to increase the output voltage swing.  

Devices with open-collector (open-drain) outputs are very useful for creating wired 

logic operations or for interfacing loads which are incompatible with the electrical 

characteristics of the logic family.  It is, therefore, desirable for a logic family to have 

devices, at least some, which have open-collector (or open-drain) outputs.  

Packaging 

Until a few years ago most of the digital ICs were made available in dual-in-line 

packages (DIP).  If the devices were to be operated in commercial temperature 

range, they come in plastic DIPs, and if they are to be used over a larger 

temperature range, they would be used in ceramic DIPs.  With increasing 

miniaturisation at systems level and integration at the chip level the number of 

pins/IC have been steadily increasing.  This increase in the pin count led to the 

introduction of different packages for the ICs.  Selecting an appropriate package is 

one of the design decisions today’s digital designer has to make. 

 



Cost  

The last consideration, and often the most important one, is the cost of a given logic 

family.  The first approximate cost comparison can be obtained by pricing a common 

function such as  a dual four-input or quad two-input gate.  But the cost of a few 

types of gates alone can not indicate the cost of the total system.  The total system 

cost is decided not only by the cost of ICs but also by the cost of  

 printed wiring board on which the ICs are mounted  

 assembly of circuit board 

 testing 

 programming the programmable devices  

 power supply  

 documentation  

 procurement  

 storage  

 etc.   

In many instances the cost of ICs could become a less important component of the 

total cost of the system.   

Concluding Note 

The question that arises after considering all the desirable features of a logic family 

is “why not design a family that best meets these needs and then mass produce it 

and drive the costs down?”  Unfortunately, this can not be achieved as there is no 

universal logic family that a does a good job of meeting all the previously stated 

needs.  Silicon technology, though better understood and studied than any other 

solid-state technology, still has its own limitations.  Besides, the demand for higher 

and higher performance specifications continues to grow.   

 



      

Electrical Characteristics of Schottky TTL Family 

Table gives the worst case values for the input and output voltage levels in both the 

logic states.  

 TTL Families Military(-55 to +125oC) Commercial(0to 70oC)  

  VI VIH VOL VOH VIL VIH VOL VOH  

TTL Standard (54/74) 0.8 2 0.4 2.4 0.8 2 0.4 2.4 V 

STTL Schottky (54/74S) 0.8 2 0.5 2.5 0.8 2 0.5 2.7 V 

LSTTL Low-power Schottky 
(54/74LS) 

0.8 2 0.5 2.5 0.8 2 0.5 2.7 V 

ALSTTL 

 

Advanced Low- power 
Schottky  (54/74ALS) 

0.8 2 0.4 2.5 0.8 2 0.5 2.7 V 

ASTTL Advanced Schottky 
(54/74AS) 

0.8 2 0.5 2.5 0.8 2 0.5 2.7 V 

FAST Fairchild Advanced 
Schottky (54/74F) 

0.8 2 0.5 2.5 0.8 2 0.5 2.5 V 

 

The noise margins are: 

 dc noise margin in High state = VOHmin - VIHmin  = 0.7 V 

 dc noise margin in Low state  = VILmax - VOLmax = 0.3 V 

The noise margin levels are different in High and Low states and are shown in the 

following Table. These levels are lower in comparison to the noise levels of CMOS 

circuits. 

  
TTL Families 

Military 
(-55 to 125oC) 

Commercial  
(0 to 70oC) 

 

  Low NM High NM Low NM High NM  

TTL Standard (54/74) 400 400 300 400 mV 

STTL Schottky (54/74S) 300 500 300 700 mV 

LSTTL Low-power Schottky 
(54/74LS) 

300 500 300 700 mV 

ALSTTL 

 

Advanced Low- 
power Schottky 
(54/74ALS) 

400 500 300 500 mV 

ASTTL Advanced Schottky 
(54/74AS) 

400 500 300 500 mV 

FAST Fairchild Advanced 
Schottky (54/74F) 

300 500 300 500 mV 

 

 

 



      

Loading: The load characteristics of Schottky TTL families are given in the following Table. 

TTL 
Families 

Input currents Output currents Units 

 IIH IIL IOH IOL  

TTL 0.04 -1.6 -0.4 16 mA 

STTL 0.05 -2 -1 20 mA 

LSTTL 0.02 -0.4 -0.4 8 mA 

ALSTTL 0.02 -0.1 -0.4 8 mA 

ASTTL 0.02 -0.5 -1 20 mA 

FAST 0 0 -0.4 8 mA 

 

Fan out is a measure of the number of gate inputs that are connected to (or driven by) 

a single output. The currents associated with LSTTL family are: 

 IILmax = -0.4 mA (This current flows out of a LSTTL input. This is sometimes 
         called Low-state unit load for LSTTL) 

 IIHmax =  20 µA  (This current flows into the LSTTL input. This is called   
        High-state Unit load for LSTTL) 

 IOLmax =   8 mA 

 IOHmax = -400 µA 

Fan out in both the High and Low states is 20 

LSTTL Dynamic Electrical Behavior 

Both the speed and the power consumption of LSTTL device depend on, to a large 

extent, AC or dynamic characteristics of the device and its load, that is, what happens 

when the output changes between states. The speed depends on two factors, transition 

times and propagation delay. 

Transition Time: The amount of time that the output of a logic circuit takes to change 

from one state to another is called the transition time. The ideal situation we would like 

to have is shown in the figure (a).  

t f

t r t f

t r

(a)

(b)

(c)

 

However, in view of the parasitic associated with circuits and boards, it is neither 

possible nor desirable to have such zero transition times. Realistically, an output takes 



      

some finite time to transit from one state to the other. These transition times are also 

known as rise time and fall time. The semi-idealistic transitions are shown in the figure 

(b). But in actuality the transitions are never sharp in view of the parasitic elements, 

and edges are always rounded. We may identify the transition times as the times taken 

for the output to traverse the undefined voltage zones, as shown in the figure (c). 

The rise and fall times of a LSTTL output depend mainly on two factors, the ON 

transistor resistance and the load capacitance. The load capacitance comes from three 

different sources: output circuits including a gate’s output transistors, internal wiring 

and packaging, have capacitances associated with them (of the order of 2-10 pF); 

wiring that connects an output to other inputs (about 1pF per inch or more depending 

on the wiring technology); and input circuits including transistors, internal wiring and 

packaging (2-15 pF per input). 

Propagation Delay: Several factors lead to nonzero propagation delays. In a LSTTL 

device, the rate at which transistors change state is influenced by the physics of the 

device, the circuit environment including input-signal transition rate, input capacitance, 

and output loading. To factor out the effect of rise and fall times, manufacturers usually 

specify propagation delays at the midpoints of input and output transitions, as shown in 

the figure. 

   

tPHL tPLH
 

Power Consumption: The currents drawn by the TTL circuits would be different in 

logic 0 and 1 states, as different sets of transistors get switched on in different states. 

Hence the designations of the supply current are ICCL and ICCH. For computing the power 

consumed by the gate an average (ICC) of these two currents is taken. The power 

consumed is given by 

 PD = ICC x VCC 

When a TTL circuit changes its state, the current drawn during the transition time would 

be larger than either of the steady states, as larger number of transistors would come 

into conducting state. The transition peak creates a large noise signal on the power 

supply line. If this is not properly filtered by using a bypass capacitance very close to 

the IC, it can constitute a major source of noise signals in TTL based digital systems. 

Therefore, there is a component of power dissipation that is proportional to frequency. 

However, this frequency dependent power dissipation becomes significant with regard to 

quiescent power dissipation only at very high frequencies. 



      

Table gives the performance characteristics of TTL family, which also enables us to 

appreciate how the technology improvements lead to the performance improvements. 

  
Family 

Prop. 
Delay 

 
(ns) 

PWR 
Dissp. 

 
(mW) 

SPD.PWR 
Product 

 
(pJ) 

Maximum  
Flip-Flop 
frequency 

(MHz) 
TTL 10 10 100 35 

HTTL 6 22 132 50 

LTTL 33 1 33 3 

LSTTL 9 2 18 45 

STTL 3 19 57 125 

ALS 4 1.2 4.8 70 

AS 1.7 8 13.6 200 

FAST 3.5 5.4 18.9 125 
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TTL Family

It offered best performance-to-cost ratio at the time of its introduction 
Its versatility lead to several subfamilies: 
� Low Power TTL
� High Frequency TTL
� Schottky TTL
Several sub-families have evolved in the Schottky TTL family:
� Low-power Schottky TTL (LSTTL)
� Fairchild Advanced Schottky TTL (FAST)
� Advanced Low Power Schottky TTL (ALSTTL)
� Advanced Schottky TTL (ASTTL)
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Bipolar logic families

� Use semiconductor diodes and bipolar junction transistor 
as the basic building blocks

� Simplest bipolar logic elements use diodes and resistors
to perform logic operation (diode logic)

� Many TTL logic gates use diode logic internally, and 
boost their output drive capability using transistor
circuits. 

� Some TTL gates use parallel configurations of 

transistors to perform logic functions.
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Diode

A diode can be modelled as

Slope = 1/Rf

V

I

Vd

Vd=0.6v

Reverse bias     Forward bias
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Diode (2)

� It is an open circuit when it is reverse biased (we ignore 
its leakage current)

� It acts like a small resistance, Rf, in series with Vd, a 
small voltage source. 

� Rf is the forward resistance of the diode, about 25 
� Vd is called diode drop, and is about 0.6 V 
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Logic operation with diodes
The circuit performs AND function 
0-2 V (Low) input is considered logic 0 
3-5 V (High) input is considered as logic 1. 

When both A and B inputs are High, the output X is High 
When any one of the inputs is at Low level the output is Low
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Bipolar Junction Transistor as a 
Switch

Vcc

R1

R2

Ib

Ic

Ib+Ic
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Transistor as a Switch

When the input of a saturated transistor is changed 
� Output does not change immediately 
� It takes extra time, called storage time, to come out of 

saturation 
Storage time accounts for a significant portion of the 

propagation delay in the earlier TTL families. 
This storage time is reduced by placing a Schottky diode 

between the base and collector of each transistor that 
might saturate.
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Schottky Barrier Diode

Forward current- voltage 
characteristics differences 
between the SBD and p-n
junction

It is a rectifying metal-
semiconductor contact 
formed between a metal and 
highly doped N 
semiconductor. 
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Schottky Transistor

The Schottky transistor makes use of two earlier concepts: 
� Baker clamp 
� Schottky-Barrier-Diode (SBD)



December 2006 N.J.Rao      M3L2 11

Basic NAND Gate
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FAST Schottky TTL NAND
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� 75-80% power reduction compared to standard Schottky
TTL 

� 20-40% improvement in the circuit performance using 
MOSAIC process 

� A flatter power/frequency curve
� Higher fan out

FAST devices provide
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ALS NAND Gate
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ASTTL NAND Gate
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Electrical Characteristics of 
STTL family

V2.50.520.82.50.520.8Fairchild Advanced 
Schottky (54/74F)

FAST

V2.70.520.82.50.520.8Advanced Schottky
(54/74AS)

ASTTL

V2.70.520.82.50.420.8Advanced Low- power 
Schottky

(54/74ALS)

ALSTTL

V2.70.520.82.50.520.8Low-power Schottky
(54/74LS)

LSTTL

V2.70.520.82.50.520.8Schottky (54/74S)STTL

V2.40.420.82.40.420.8Standard (54/74)TTL

VOHVOLVIHVILVOHVOVIHVI

Commercial (0 to 70oC)Military (-55 to +125oC)TTL Families
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Noise Margins

dc noise margin in High state 

= VOHmin - VIHmin = 0.7 V
dc noise margin in Low state  

= VILmax - VOLmax = 0.3 V
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Noise Margins

mV500300500300Fairchild Advanced 
Schottky (54/74F)

FAST

mV500300500400Advanced Schottky
(54/74AS)

ASTTL

mV500300500400AdvancedLow- power 
Schottky (54/74ALS)

ALSTTL

mV700300500300Low-power Schottky
(54/74LS)

LSTTL

mV700300500300Schottky (54/74S)STTL

mV400300400400Standard (54/74)TTL

High 
NM

Low NMHigh NMLow NM

Commercial 
(0 to 70oC)

Military 
(-55 to +125oC

TTL Families
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Loading

mA8-0.400FAST

mA20-1-0.50.02ASTTL

mA8-0.4-0.10.02ALSTTL

mA8-0.4-0.40.02LSTTL

mA20-1-20.05STTL

mA16-0.4-1.60.04TTL

IOLIOHIILIIH
Units

Output currentsInput currents
TTL Family
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Fan out

IILmax = -0.4 mA (This current flows out of a LSTTL input 
and this is called Low-state unit load 
for LSTTL)

IIHmax =  20 mA (This current flows into the LSTTL input,
and is called High-state Unit load for 
LSTTL)

IOLmax =   8 mA

IOHmax = - 400 A
Fan out in both High and Low states is 20
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Signal Representation

t f

t r tf

t r

(a)

(b)

(c)
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Transition Times

The rise and fall times depend on 
 ON transistor resistance and 
 Load capacitance

The load capacitance comes from 
 Internal wiring and packaging have capacitances 

associated with them (about 2-10 pF) 
 Wiring that connects an output to other inputs (about 

1 pF per inch or more depending on the wiring 
technology) 

 Input circuits including transistors, internal wiring and 
packaging (2-15 pF per input)
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Propagation Delay

Manufacturers usually specify propagation delays at the 
midpoints of input and output transitions

tPHL tPLH
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Power Consumption

� The currents drawn would be different in logic 0 and 1 states
� ICC is the average of ICCL and ICCH

� The power consumed is given by  PD = ICC x VCC

� Current drawn during the transition time would be larger than either 
of the steady states

� Transition peaks create large noise signal on the power supply line. 
� Needs filtering by using a bypass capacitance very close to the IC
� Transition component of power dissipation is proportional to 

frequency. 
� This frequency dependent power dissipation becomes significant 

with regard to quiescent power dissipation only at very high 
frequencies.
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Performance characteristics

12518.95.43.5FAST

20013.681.7AS

704.81.24ALS

12557193STTL

451829LSTTL

333133LTTL

50132226HTTL

351001010TTL

Maximum 
Flip-Flop frequency

(MHz)

SPD.PWR
Product

(pJ)

PWR 
Dissp.

(mW)

Prop. 
Delay

(ns)
Family



      

TTL Family 

Introduction 

Transistor-Transistor Logic (TTL) and Emitter Coupled Logic (ECL) are the most commonly 

used bipolar logic families. Bipolar logic families use semiconductor diodes and bipolar 

junction transistors as the basic building blocks of logic circuits. Simplest bipolar logic 

elements use diodes and resistors to perform logic operation; this is called diode logic. 

Many TTL logic gates use diode logic internally, and boost their output drive capability using 

transistor circuits. Other TTL gates use parallel configurations of transistors to perform logic 

functions.  

It turned out at the time of introducing TTL circuits that they were adaptable to virtually all 

forms of IC logic and produced the highest performance-to-cost ratio of all logic types. In 

view of its versatility a variety of subfamilies (Low Power, High Frequency, Schottky) 

representing a wide range of speed-power product have also been introduced. The Schottky 

family has been selected by the industry to further enhance the speed-power product. In 

Schottky family circuits, a Schottky diode is used as a clamp across the base-collector 

junction of a transistor to prevent it from going into saturation, thereby reducing the 

storage time. Several sub-families have evolved in the Schottky TTL family to offer several 

speed-power products to meet a wide variety of design requirements. These sub-families 

are: 

 Low-power Schottky TTL (LSTTL) 

 Fairchild Advanced Schottky TTL (FAST) 

 Advanced Low Power Schottky TTL (ALSTTL) 

 Advanced Schottky TTL (ASTTL) 

We will explore the characteristics of the TTL family in this Learning Unit. 

Diodes 

A semiconductor diode is fabricated from two types, p-type and n-type, of semiconductor 

material that are brought into contact with each other. The point of contact between the p 

and n materials is called p-n junction. Actually, a diode is fabricated from a single 

monolithic crystal of semiconductor material in which the two halves are doped with 

different impurities to give them p-type and n-type properties. A real diode can be modelled 

as shown in the figure 1.  

 It is an open circuit when it is reverse biased (we ignore its leakage current) 

 It acts like a small resistance, Rf, called the forward resistance, in series with Vd, 

called a diode drop, a small voltage source.  

 The forward diode drop would be about 0.6 V and Rf is about 25 Ω. 



 

   

Reverse bias     Forward bias 

FIG. 1: Model of a real diode 

Diode action is exploited to perform logical operations. The circuit shown in the figure 2 

performs AND function if 0-2 V (Low) input is considered logic 0 and 3-5 V (High) input is 

considered as logic 1. When both A and B inputs are High, the output X will be High. If any 

one of the inputs is at Low level, the output will also be at Low level.  

     

 

    FIG.2: Diode AND gate 

Bipolar Junction Transistor 

A bipolar junction transistor is a three terminal device and acts like a current-controlled 

switch. If a small current is injected into the base, the switch is “on”, that is, the current 

will flow between the other two terminals, namely, collector and emitter. If no current is put 

into the base, then the switch is “off” and no current flows between the emitter and the 

collector. A transistor will have two p-n junctions, and consequently it could be pnp 

transistor or npn transistor. An npn transistor, found more commonly in IC logic circuits, is 

shown in the figure 3 in its common-emitter configuration. 

 

 

 

             

 

   FIG. 3: Common emitter configuration of an npn transistor 



      

The relations between different quantities are given as in the following: 

 Ib  = (VIN - 0.6)/R1 

 IC  =  β . Ib 

 VCE = VCC - IC . R2 

      = VCC - β . Ib . R2 

      = VCC - β(VIN - 0.6).R2/R1 

where β is called the gain of the transistor and is in the range of 10 to 100 for typical 

transistors. Figure 4 shows a logic inverter from an npn transistor in the common-emitter 

configuration. When the input voltage VIN Low, the output voltage is High, and vice versa. 

 

 

FIG. 4: Transistor inverter 

When the input of a saturated transistor is changed, the output does not change 

immediately; it takes extra time, called storage time, to come out of saturation. In fact, 

storage time accounts for a significant portion of the propagation delay in the earlier TTL 

families. Present day TTL logic families reduce this storage time by placing a Schottky diode 

between the base and collector of each transistor that might saturate. 

Schottky Barrier Diode 

A Schottky Barrier Diode (SBD) is illustrated in figure 5. It is a rectifying metal-

semiconductor contact formed between a metal and highly doped N semiconductor.  

     

 

FIG. 5: Schottky Barrier -Diode 

The valence and conduction bands in a metal overlap making available a large number of 

free-energy states. The free-energy states can be filled by any electrons which are injected 

into the conduction band. A finite number of electrons exist in the conduction band of a 

semiconductor. The number of electrons depends mainly upon the thermal energy and the 

level of impurity atoms in the material. When a metal-semiconductor junction is formed, 

free electrons flow across the junction from the semiconductor, via the conduction band, 

and fill the free-energy states in the metal. This flow of electrons builds a depletion 

potential across the barrier. This depletion potential opposes the electron flow and, 



eventually, is sufficient to sustain a balance where there is no net electron flow across the 

barrier. Under the forward bias (metal positive), there are many electrons with enough 

thermal energy to cross the barrier potential into the metal. This forward bias is called “hot 

injection.” Because the barrier width is decreased as forward bias VF increases, forward 

current will increase rapidly with an increase in VF.   

When the SBD is reverse biased, electrons in the semiconductor require greater energy to 

cross the barrier. However, electrons in the metal see a barrier potential from the side 

essentially independent of the bias voltage and small net reverse current will flow. Since 

this current flow is relatively independent of the applied reverse bias, the reverse current 

flow will not increase significantly until avalanche breakdown occurs. A simple metal/n-

semiconductor collector contact is an ohmic contact while the SBD contact is a rectifying 

contact. The difference is controlled by the level of doping in the semiconductor material.  

Current in SBD is carried by majority carriers. Current in a p-n junction is carried by 

minority carriers and the resultant minority carrier storage causes the switching time of a p-

n junction to be limited when switched from forward bias to reverse bias. A p-n junction is 

inherently slower than an SBD even when doped with gold. Another major difference 

between the SBD and p-n junction is forward voltage drop.  For diodes of the same surface 

area, the SBD will have a larger forward current at the same forward bias regardless of the 

type of metal used. The SBD forward voltage drop is lower at a given current than a p-n 

junction. Figure 6 illustrates the forward current-voltage characteristic differences between 

the SBD and p-n junction. 

 

 

 

FIG. 6: Characteristics of SBD and pn junction diodes 

Schottky Transistor 

The Schottky transistor makes use of two earlier concepts: Baker clamp and the Schottky-

Barrier-Diode (SBD). The Schottky clamped transistor is responsible for increasing the 

switching speed. The use of Baker Clamp, shown in the figure 7, is a method of avoiding 

saturation of a discrete transistor.         

   



      

     

 

    FIG. 7: Baker Clamp 

The germanium diode forward voltage is 0.3 V to 0.4 V as compared to 0.7 V for the base-

emitter junction silicon diode. When the transistor is turned on, base current drives the 

transistor toward saturation. The collector voltage drops, the germanium diode begins to 

conduct forward current, and excess base drive is diverted from the base-collector junction 

of the transistor. This causes the transistor to be held out of deep saturation, the excess 

base charge not stored, and the turn-off time to be dramatically reduced. However, a 

germanium diode cannot be incorporated into a monolithic silicon integrated circuit. 

Therefore, the germanium diode must be replaced with a silicon diode which has a lower 

forward voltage drop than the base-collector junction of the transistor. A normal p-n diode 

will not meet this requirement. An SBD can be used to meet the requirement as shown in 

the figure 8. 

 

 

FIG.8: The Schottky-Clamped Transistor 

The SBD meets the requirements of a silicon diode which will clamp a silicon npn transistor 

out of saturation. 

BASIC NAND GATE 

The familiarization with a logic family is acquired, in general, through understanding the 

circuit features of a NAND gate. The circuit diagram of a two-input LSTTL NAND gate, 

74LS00, is shown in the figure 9.  

D1 and D2 along with 18 KΩ resistor perform the AND function. Diodes D3 and D4 do 

nothing in normal operation, but limit undesirable negative excursions on the inputs to a 

signal diode drop. Such negative excursions may occur on High-to-Low input transitions as 

a result of transmission-line effects. Transistor Q1 serves as an inverter, so the output at its 

collector represents the NAND function. It also, along with its resistors, forms a phase 

splitter that controls the output stage. The output state has two transistors, Q3 and Q4, 

only one of which is on at any time. The TTL output state is sometimes called a totem-pole 

output. Q2 and Q5 provide active pull-up and pull-down to the High and Low states, 



respectively. Transistor Q5 regulates current flow into the base of Q4 and aids in turning Q4 

off rapidly. Transistors Q3 and Q2 constitute a Darlington driver, with Q3 not being 

permitted to saturate. The network consisting of Schottky diodes D3 and D4 and a 5 KΩ 

resistor is connected to the output and aids in charging and discharging load capacitance 

when Q3 and Q4 are changing states. Transistor Q4 conducts when the output is in Low 

state. 

 

FIG. 9: Low Power Schottky NAND (74LS00) 

The FAST Schottky TTL family provides a 75-80% power reduction compared to standard 

Schottky TTL and yet offers 20-40% improved circuit performance over the standard 

Schottky due to the MOSAIC process. Also, FAST circuits contain additional circuitry to 

provide a flatter power/frequency curve. The input configuration of FAST uses a lower input 

current which translates into higher fan-out. The NAND gate of FAST family is shown in the 

figure 10. 

The F00 input configuration utilises a p-n diodes (D1 and D2) rather than pnp-transistor. 

The p-n diode offers a much smaller capacitance and results in much better ac noise 

immunity at the expense of increased input 



      

current

 

FIG. 10: FAST NAND (74F00) 

Figure 11 shows one gate in 74ALS00A quad 2-input NAND gate parallel-connected pnp 

transistors Q1 and Q2 are used at the input. These transistors reduce the current flow, IR, 

when the inputs are low and thus increase fan out. If inputs A, B, or both are low, then the 

respective pnp transistors turn on because their emitters are then more positive than their 

bases. If at least one of the inputs is low, the corresponding pnp transistor conducts, 

making the base of Q3 low and keeping Q3 off. If both the inputs A and B are high, both 

switches are open and Q3 turns on. Q3 drives Q4 (by emitter follower action), and Q4 

drives the output totem pole. Schottky diodes D3, D4 and D5 are used to speed the 

switching and do not affect the logic. Note that the output and the inputs have Schottky 

protective diodes. Figure 12 shows one gate in 74AS00 gate. 

 



FIG. 11: ALS NAND gate 
(74ALS00A)

 

FIG. 12: ASTTL NAND gate (74AS00) 

Note that the input logic circuitry is essentially the same as that in 74ALS00 gate, as is the 

output totem pole. The additional circuitry between input and output improves switching 

speeds using sophisticated drivers and feedback networks 

The ALS and AS families incorporate the following features: 

1. Full Schottky clamping of all saturating transistors virtually eliminating storing 

excessive base charge and significantly enhancing turn-off time of the transistors. 

2. Elimination of transistor storage time provides stable switching times across the 

temperature range. 

3. An active turn-off is added to square up the transfer characteristic and provide 

improved high-level noise immunity. 

4. Input and output clamping is implemented with Schottky diodes to reduce negative-

going excursions on the inputs and outputs. Because of its lower forward voltage 

drop and fast recovery time, the Schottky input diode provides improved clamping 

action over a conventional p-n junction diode. 

5. The ion implantation process allows small geometries giving less parasitic 

capacitances so that switching times are decreased. 

6. The reduction of the epi-substrate capacitance using oxide isolation also decreases 

switching times. 
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CMOS Family

CMOS has often been called the ideal technology. 
It has 
� Low power dissipation
� High noise immunity to power supply noise
� Symmetric switching characteristics 
� Large supply voltage tolerance
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CMOS Family

Reducing power requirements leads to 
� Reduction in the cost of power supplies 
� Simplifies power distribution 
� Possible elimination of cooling fans 
� A denser PCB 
� Ultimately lower cost of the system
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History of CMOS

� Operation of a MOS transmission was understood long 
before bipolar transistor was invented

� As its fabrication could not be monitored, development of 
MOS circuits lagged bipolar circuits considerably

� Initially they were attractive only in selected applications. 
� At present CMOS circuits are used from SSIs to VLSIs
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MOS transistor

� The basic building blocks in CMOS logic circuits are MOS 
transistors. 
� A MOS transistor can be viewed as a 3-terminal device      
that acts like a voltage-controlled resistance

Vin
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MOS transistor

� An input voltage, applied to one terminal, controls the 
resistance between the remaining two terminals. 

� In digital applications, a MOS transistor is operated so 
that its resistance is always either very high (and the 
transistor �off�) or very low (and the transistor is always 
�on�).
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Types of MOS transistors

There are two types of transistors
� NMOS transistor that uses n-channel
� PMOS transistor that uses p-channel
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NMOS Transistor

VGS in NMOS device is normally zero or positive. 
If VGS = 0 then the resistance from drain to source (RDS) is 
very high, of the order of mega ohm or more. 
When VGS is made positive RDS can decrease to a very low 
value, of the order of 10 ohms. 
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PMOS Transistor

VGS is normally zero or negative. 
If VGS is zero, then the resistance from source to drain 
(RDS) is very large
When VGS is negative RDS can decrease to a very low 
value.

*DWH

'UDLQ

9*6

6RXUFH
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Gate of a MOS transistor

� It has very high impedance
� Gate is separated from the source and drain by an 

insulating material with a very high resistance. 
� Gate voltage creates an electric field that enhances or 

retards the flow of current between source and drain. 
This is the �field effect� in a MOSFET. 

� The high resistance between the gate and the other 
terminals keeps the gate current to values lower than a 
microampere irrespective of the gate voltage.
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Gate of a MOS transistor (2)

� The gate current is called �leakage current�. 
� The gate of a MOS transistor is capacitively coupled to 

the source and drain. 
� In high speed circuits, the power needed to charge and 

discharge these capacitances on each input signal 
transition accounts for a non trivial portion of a circuit�s 
power consumption.
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Basic CMOS Inverter circuit

� NMOS and PMOS transistors are used together in a 
complementary way to form CMOS logic

� The power supply voltage VDD, typically is in the range of 
2- 6 V, and is most often set at 5.0 V for compatibility 
with TTL circuits.
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Basic CMOS Inverter circuit (2)

0VOnOff5.0

5VOffOn0.0

V
OUT

Q2Q1V
IN

When VIN is at 0.0 V, the lower n-channel MOSFET Q1 is OFF since its 
VGS is 0, but the upper p-channel MOSFET Q2 is ON since its VGS 

would be -5.0 V
VOUT at the output terminal would be +5.0 V. 
Similarly when VIN is at 5.0 Q1 will be ON presenting a small 
resistance, while Q2 will be OFF presenting a large resistance. 
VOUT would be 0 V
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Inverter as per the bubble convention
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CMOS NAND Gate

LOFFOFFONONHH

HONOFFOFFONLH

HOFFONONOFFHL

HONONOFFOFFLL

XQ4Q3Q2Q1BA



December 2006 N.J.Rao      M3L3 16

CMOS NOR Gate

LOFFOFFONONHH

LONOFFOFFONLH

LOFFONONOFFHL

HONONOFFOFFLL

XQ4Q3Q2Q1BA
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Non-inverting Gates

$ ;� �$

9''

Buffer AND Gate
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Buffering

Unbuffered NAND

Most of the CMOS families are buffered.

Buffered NAND 
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Advantages of buffering

� Output characteristics of all devices are more easily 
made identical. 

� Multistage gates will have better noise immunity due to 
their higher gain caused by having several stages from 
input to output. 

� Output impedance of buffered gates is unaffected by 
input conditions
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Advantages of buffering (2)

� Single stage gates implemented would require large 
transistors due to the large output drive requirements.

� Large devices would have a large input capacitance 
associated with them. This would affect the speed of 
circuits driving into an unbuffered gate, especially when 
driving large fan outs. 

� Buffered gates have small input transistors and 
correspondingly small input capacitance. 

� Internal stages are much faster than the output stage 
and speed lost by buffering is relatively small.
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Transmission Gates

� A p-channel and n-channel transistor pair can be used 
as a logic-controlled switch. 

� When EN is High there is a low impedance connection 
(as low as 5 W) between points A and B. 

� When EN is Low, points A and B are disconnected. 
� Propagation delay from A to B is very short. 
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2-input multiplexer with 
transmission gate

When S is Low, the B is connected to X, and 
when S is High, A is connected to X. 
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CMOS Input and Output Structures

� CMOS family offers a Hex inverter with Schmitt inputs 
(74HC14). 

� It offers a hysterisis of 1.5 V when operated at 5 V.
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CMOS tri-state buffer

HONOFFHH

LOFFONLH

Hi-ZOFFOFFHL

Hi-ZOFFOFFLL

OUTQ2Q1AEN
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Open-drain CMOS NAND gate

 

A 

B 

X A    B     Q1    Q2       X 

L    L 
L 
H 
H 

   H 
   L      on     off    open 

H 

   off     off    open 
 off     on    open 

on     on       L 

A 
B 

X 
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Open-drain CMOS NAND gate 
driving a load

A
B C

D

X

Y

R = 1.5 K 
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CMOS Logic Families

� 4000-series 
� High Speed CMOS (75HC CMOS)
� High Speed TTL compatible CMOS (75HCT CMOS)
� HC CMOS can use any power supply voltage between 2 

and 6 V. 
� Lowering the supply voltage is effective, since most 

CMOS power dissipation is CV2f
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CMOS Logic Families (2)

� AC (Advanced CMOS) ACT (Advanced CMOS, TTL 
compatible) were introduced in mid-1980s. 

� FCT (Fast CMOS, TTL compatible) introduced in 1990s
� The family combines circuit innovations with smaller 

transistor geometries to produce devices that are even 
faster than AC and ACT while reducing power 
consumption and maintaining full compatibility with TTL. 
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Subfamilies of FCT CMOS

� FCT-T and FCT2-T
� These families represent a �technology crossover point�

that occurred when the performance achieved using 
CMOS technology matched that of bipolar technology, 
and typically one third the power. 

� Both the logic families are TTL compatible
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Logical Levels

 2 3 V C1
3 VC

V0.40.20.52.40.72FCT

V2.40.70.1V
CC

-0.10.82ACTMOS

V1.41.40.1V
CC

-0.11.53.5ACMOS

V2.40.70.1V
CC

-0.10.82HCTMOS

V1.41.40.1V
CC

-0.11.53.5HCMOS

V1.61.60.01V
CC

-0.14000B

NM HIGH

@V
CC

=5V

NM LOW 

@V
CC

=5V

V
OLMAX

V
OHMIN

V
ILMAX

V
IHMIN

Family
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Noise Margins

Voltage levels associated with CMOS gates 
VIL(max) =  30% VDD
VOH(min) =  VDD - 0.1 V
VIH(min) =  70% VDD
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Input and Output Current Levels

mA48 @0.5 V-15 @ 2.4 V-0.0050.00574FCT

mA24 @0.4 V-24@V
CC

-0.8-0.0010.00174ACT

mA24 @0.4 V-24@V
CC

-0.8-0.0010.00174AC

mA4 @ 0.4 V-4 @V
CC

-0.80.0010.00174HCT

mA4 @0.4-4 @V
CC

-0.8-0.0010.00174HC

mA0.4@0.4 V-1.6 @2.5 V0.0010.0014000b +5

I
OL

I
OH

I
IL

I
IH

Output currentsInput currentsCMOS 

Families

mailto:@0.5
mailto:@0.4
mailto:@0.4
mailto:@0.4-4
mailto:mA0.4@0.4
mailto:@2.5
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Fan out

For HCMOS 

� IILmax is +1 A in any state 
� IOHmax = -20 A and IOLmax = 20 A
� Low-state fan out is 20 
� High-state fan out is 20
� If we are willing to work with slightly degraded output 

voltages, which would reduce the available noise 
margins, we can go for a much larger fan out 
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Dynamic Electrical Behavior

Speed depends on transition times and propagation delay
The rise and fall times of an output of CMOS IC depend on
� ON transistor resistance 
� Load capacitance 
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Dynamic Electrical Behavior (2)

Load capacitance comes from
� Output circuits including a gate�s output transistors 
� Internal wiring and packaging, have capacitances 

associated with them (of the order of 2-10 pF)
� Wiring that connects an output to other inputs (about 1pF 

per inch or more depending on the wiring technology) 
� Input circuits including transistors, internal wiring and 

packaging (2-15 pF per input).
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Dynamic Electrical Behavior (3)

� OFF transistor resistance would be about 1 M, 
� ON resistance of p-channel transistor would be of the 

order of 200 
� ON resistance of n-channel resistance would be about 

100 
� We can compute the rise and fall times from the 

equivalent circuits. 
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Propagation Delay

In a CMOS device, the rate at which transistors change 
state is influenced by 

� Physics of the device 
� Circuit environment including input-signal transition rate, 

input capacitance, and output loading
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Speed Characteristics 

605.8  (�138)FCTMOS

458ACTMOS

458.5ACMOS

2524HCTMOS

2522HCMOS

51604000B

Flip-Flop frequency

(MHz)

Prop. Delay

(ns)

Family

Device outputs in AC and ACT families have very fast rise and fall times. 
Input signals should have rise and fall times of 3.0 ns (400 ns for HC and 
HCT devices) and signal swing of 0V to 3.0V for ACT devices or 0V to 
VDD for AC devices. 
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Power Consumption

� A CMOS circuit consumes significant power only during 
transition

� Sources of dynamic power dissipation
� Partial short-circuiting of the CMOS output structure 
� Capacitive load (CL) on the output
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Partial short-circuiting

The amount of power consumed during transition    
depends on 
 the value of VDD

 the frequency of output transitions 
Equivalent dissipation capacitance CPD as given by the 

manufacturer
PT = CPD . V2

DD. f 

CPD for a gate of HCMOS is about 24 pF
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Dissipation due to capacitive loading

� During Low-to-High transition, current passes through 
the p-channel transistor to charge the load capacitance. 

� During High-to-Low transition, current flows through the 
n-channel transistor to discharge the load capacitor. 

� During the transitions the voltage across the capacitor 
changes by VDD. 

� For each pulse there would be two transitions.
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Dissipation due to capacitive 
loading (2)

As the currents are passing through the transistors, and 
capacitor itself would not be dissipating any power, the 
power dissipated due to the capacitive load is

2
L L DDP  = C .V .f
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Total dynamic power dissipation

PD = PT + PL

=
= 

2 2
PD DD L DDC .V .f+C .V .f

2
PD L DD(C +C ).V .f

FCT does not have a CPD specification
ICCD specification gives the same information in a different 
way. 
The internal power dissipation due to transition at a given 
frequency f can be calculated by the formula 

PT = VCC . ICCD . f
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Power Dissipation Characteristics

pF60608585�138

pF30302424�00

Power dissipation   (capacitance)

mW7.50.040.040.040.04�138

mW0.0050.0050.00250.0025�00

Quiescent power dissipation

UnitsFCTACTACHCTHCParameter
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Power Dissipation Characteristics (2)

mW3021.0421.0421.0421.04�138 at 10 MHz

mW91.541.542.142.14�138 at 1 MHz

mW7.50.190.190.250.25�138 at 100KHz

mW7.5057.5056.00256.0025�00 at 10 MHz

mW0.7550.7550.60250.6025�00 at I MHz

mW0.080.080.06250.0625�00 at 100KHz

Total power dissipation

mW1.51.51.52.12.1�138 at 1 MHz

mW0.750.750.60.6�00 at 1 MHz

Dynamic power dissipation

UnitsFCTACTACHCTHCParameter



  

CMOS FAMILY 

CMOS has often been called the ideal technology. It has low power dissipation, 

high noise immunity to power supply noise, symmetric switching characteristics 

and large supply voltage tolerance. Reducing power requirements leads to 

reduction in the cost of power supplies, simplifies power distribution, possible 

elimination of cooling fans and a denser PCB, ultimately leading to lower cost of the 

system. Though the operation of a MOS transmission was understood long before 

bipolar transistor was invented, its fabrication could not be monitored. 

Consequently development of MOS circuits lagged bipolar circuits considerably, and 

initially they were attractive only in selected applications. In recent years, 

advances in the design of MOS circuits have vastly increased their performance and 

popularity. By far majority of the large scale integrated circuits such as 

microprocessors and memories use CMOS. The usage of CMOS logic is increasing in 

applications that use small and medium scale integrated circuits as CMOS circuits, 

while offering functionality and speed similar to bipolar logic circuits, consume very 

much less power.  

CMOS LOGIC CIRCUITS 

The basic building blocks in CMOS logic circuits are MOS transistors. A MOS 

transistor can be received as a 3-terminal device that acts like a voltage-controlled 

resistance, as shown in the figure 1.  

Vin

   

FIG. 1: MOS transistor as a voltage controlled resistance 

An input voltage applied to one terminal controls the resistance between the 

remaining two terminals. In digital applications, a MOS transistor is operated so its 

resistance is always either very high (and the transistor “off”) or very low (and the 

transistor is always “on”). There are two types of MOS transistors n-channel and p-

channel. The circuit symbols for NMOS and PMOS transistors are shown in the 

figure 2.  

Drain

Source

Gate Gate

+ +

_- _-
Vgs Vgs

Drain

Source

    

   NMOS transistor  PMOS transistor 

FIG. 2: Circuit symbols of MOSFETs 



  

The terminals are called gate, source and drain. The voltage from gate to source 

(VGS) in NMOS device is normally zero or positive. If VGS = 0 then the resistance 

from drain to source (RDS) is very high, of the order of mega ohm or more. When 

VGS is made positive RDS can decrease to a very low value, of the order of 10 ohms. 

In the PMOS transistor VGS is normally zero or negative. If VGS is zero, then the 

resistance from source to drain (RDS) is very large, and when VGS is negative RDS 

can decrease to a very low value. The gate of a MOS transistor has very high 

impedance, as it is separated from the source and drain by an insulating material 

with a very high resistance. However, the gate voltage creates an electric field that 

enhances or retards the flow of current between source and drain. This is the “field 

effect” in a MOSFET. The high resistance between the gate and the other terminals 

keeps the gate current to values lower than a microampere irrespective of the gate 

voltage. This current is called “leakage current”. The gate of a MOS transistor is 

capacitively coupled to the source and drain. In high speed circuits, the power 

needed to charge and discharge these capacitances on each input signal transition 

accounts for a non trivial portion of a circuit’s power consumption. 

Basic CMOS Inverter circuit: NMOS and PMOS transistors are used together in a 

complementary way to form CMOS logic, as shown in the figure 3. The power 

supply voltage VDD, typically is in the range of 2- 6 V, and is most often set at 5.0 

V for compatibility with TTL circuits. 

     

 

V DD

V

V

P Channel

N Channel

Q

Q

1

2IN

OUT 0.0
5.0

Q Q V
On
Off

Off
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5V
0V

VIN 1 2 OUT

 

FIG. 3: CMOS Inverter 

When VIN is at 0.0 V, the lower n-channel MOSFET Q1 is OFF since its VGS is 0, but 

the upper p-channel MOSFET Q2 is ON since its VGS would be -5.0 V. Consequently 

Q2 presents a small resistance while Q1 presents a large resistance. VOUT at the 

output terminal would be +5.0 V. Similarly when VIN is at 5.0 Q1 will be ON 

presenting a small resistance to ground while Q2 will be OFF presenting a large 

resistance. The output terminal voltage (VOUT) would be 0 V. Obviously this circuit 

behaves as an inverter. 

As we associated a logic state 0 or 1 with a voltage, we can say when the input 

signal is asserted Q1 is ON and Q2 is OFF, and when the input signal is not 

asserted Q1 is OFF and Q2 is ON. We make use of this interpretation to further 



  

simplify the circuit representation of MOSFETs, as shown in the figure 4. The 

bubble convention goes along with the convention followed in drawing logic 

diagrams. 

Q1

Q2

VDD

VIN

VOUT

 

   FIG. 4 CMOS inverter drawn as per logic convention 

CMOS NAND and NOR gates: Logic gates can be realised using CMOS circuits. A 

k-input gate uses k p-channel MOSFETs and k n-channel MOSFETs. Figure 5 shows 

a 2-input NAND gate. If either input is Low, the output X is High with low impedance 

connection to VDD through the corresponding p-channel transistor, and the path to 

the ground is blocked by the corresponding OFF n-channel MOSFET. If both inputs 

are High, the two n-channel MOSFETs are ON and the two p-channel MOSFETs are 

OFF. This is the operation required for the circuit to function as a NAND gate. 

 

A B Q1 Q2 Q3 Q4 X 
L L OFF OFF ON ON H 
L H OFF ON ON OFF H 
H L ON OFF OFF ON H 
H H ON ON OFF OFF L 

     

 

      

FIG. 5: 2-input CMOS NAND gate 

A 2-input NOR gate is shown in figure 6. Only when A and B are Low the output X 

is High and for all other combination of input levels the output is Low.  

A B Q1 Q2 Q3 Q4 X 
L L OFF OFF ON ON H 
L H OFF ON ON OFF L 
H L ON OFF OFF ON L 
H H ON ON OFF OFF L 

 

         

 

FIG. 6: 2-input CMOS NOR gate 
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Non Inverting Gates: In all logic families, the simplest gates are inverters, and 

the next simplest are NAND and NOR gates. It is typically not possible to design a 

non-inverting gate with a smaller number of transistors than an inverting one. 

CMOS non-inverting buffers and AND and OR gates are obtained by connecting an 

inverter to the output of the corresponding inverting gate. Figure 7 shows a non 

inverting buffer and an AND gate 

 

 

         

 

 

 

 

 

 

Buffer         AND gate 

FIG. 7: Non inverting Buffer and AND gate 

Buffering: Most of the CMOS families are buffered. Buffering CMOS logic merely 

denotes designing the IC so that the output is taken from an inverting buffer stage. 

An unbuffered and buffered NAND gates are illustrated in the figure 8. 

 

    

 

 

 

 

 

 

 

 

FIG. 8: Unbuffered and buffered NAND gates 

There are several advantages to buffering. By using the standardised buffer, the 

output characteristics of all devices are more easily made identical. Multistage 

gates will have better noise immunity due to their higher gain caused by having 

several stages from input to output. Also, the output impedance of an unbuffered 

gate may change with input logic level voltage and input logic combination, 

whereas buffered output are unaffected by input conditions. Single stage gates 

implemented would require large transistors due to the large output drive 

requirements. These large devices would have a large input capacitance associated 

A X = A

VDD

A

B

V DD

A

B

X = A.B

X

VDD

Q2

Q1

Q4Q3

A

B

A

B

X = /(A.B)



  

with them. This would affect the speed of circuits driving into an unbuffered gate, 

especially when driving large fan outs. Buffered gates have small input transistors 

and correspondingly small input capacitances. One may think that a major 

disadvantage of buffered circuits would be speed loss. It would seem that a two or 

three stage gate would be two to three times slower than a buffered one. However, 

internal stages are much faster than the output stage and speed lost by buffering 

is relatively small. 

Transmission Gates: A p-channel and n-channel transistor pair can be used as a 

logic-controlled switch. This circuit, shown in the figure 9, is called a CMOS 

transmission gate. 

/EN

EN

A B

 

FIG. 9: CMOS transmission gate 

A transmission gate is operated so that its input signals EN and /EN are always at 

opposite levels. When EN is High and /EN is Low, there is a low impedance 

connection (as low as 5 Ω) between points A and B. When EN is Low and /EN is 

High, points A and B are disconnected. Once transmission gate is enabled, the 

propagation delay from A to B (or vice versa) is very short. Because of their short 

delays and conceptual simplicity, transmission gates are often used internally in 

larger-scale CMOS devices such as multiplexers and flip-flops. For example, figure 

10 shows how transmission gates can be used to create a 2-input multiplexer 

A

B

S

X

VDD

. 

FIG. 10: Two-input multiplexer using CMOS transmission gates 

When S is Low, the B is connected to X, and when S is High, A is connected 

to X. While it may take some nanoseconds for the transmission gate to 

change its state, the propagation delay from input to output of the gate 

would be very small. 



  

CMOS Input and Output Structures: CMOS family like other logic families has 

provision for accepting slow changing inputs, offering three-state outputs, and for 

wired logic connection. CMOS family offers a Hex inverter with Schmitt inputs 

(74HC14). It offers a hysterisis of 1.5 V when operated at 5 V. It can transform 

slowly changing input signals into sharply defined, jitter-free output signals. In 

addition, they have a greater noise margin than conventional inverters. 

A circuit diagram (including schematics for gates) for a CMOS three-state buffer is 

shown in the figure 11. When enable (EN) is Low, both output transistors are off, 

and the output is in the Hi-Z state. Otherwise, the output is High or Low as 

controlled by the “data” input A. The figure also shows logic symbol for a three-

state buffer. There is a leakage current of up to 10 µA associated with a CMOS 

three-state output in its Hi-Z state. This current, as well as the input currents of 

receiving gates, must be taken into account when calculating the maximum 

number of devices that can be placed on a three-state bus. That is, in the Low or 

High state, an enabled three-state output must be capable of sinking or sourcing 

10µA of leakage current for every other three-state output on the bus, as well as 

sinking the current required by every input on the bus. 

 

EN A Q1 Q2 OUT 
L L OFF OFF Hi-Z 
L H OFF OFF Hi-Z 
H L ON OFF L 
H H OFF ON H 

 

 

 

FIG. 11: CMOS three-state buffer 

The p-channel transistors in CMOS output structures provide active pull-up. 

These transistors are omitted in gates with open-drain outputs, such as the 

NAND gate in figure 12.   
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X A    B     Q1    Q2       X
L    L
L
H
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   L      on     off    open

H

   off     off    open
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on     on       L
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B

X

 

FIG.12: Open-drain CMOS NAND gate 
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The drain of the topmost n-channel transistor is left unconnected internally, 

so if the output is not Low it is “open”, as indicated in the figure 13. The 

underscored diamond in the symbol is sometimes used to indicate an open-

drain output. This is similar to the “open-collector” output in TTL logic 

families. An open-drain output requires an external pull-up resistor to provide 

passive pull-up to the High level. For example, figure 13 shows an open drain 

CMOS NAND gate, with its pull-up resistor, driving a load. 

 

A
B C

D

X

Y

R = 1.5 K Ω

 

FIG. 13: Open-drain CMOS NAND gate driving a load 

 

CMOS LOGIC FAMILIES 

The first commercially successful CMOS family was 4000-series CMOS. 

Although 4000-series circuits offered the benefit of low power dissipation, 

they were fairly slow and were not easy to interface with the most popular 

logic family of the time, bipolar TTL. Thus, the 4000 series was supplanted in 

most of applications by CMOS families that had better performance 

characteristics. The first two 74-series CMOS families are HC (High-speed 

CMOS) and HCT (High-speed CMOS, TTL compatible). HC and HCT both have 

higher speed and better current sinking and sourcing capability. The HCT 

family uses a power supply voltage VDD of 5 V and can be intermixed with TTL 

device, which also use a 5-V supply. 

The HC is mainly optimised for use in systems that use CMOS logic 

exclusively, and can use any power supply voltage between 2 and 6 V. A 

higher voltage is used for higher speed, and lower voltage for lower power 

dissipation. Lowering the supply voltage is especially effective, since most 

CMOS power dissipation is proportional to the square of the voltage (CV2f). 

Even when used with a 5 V power supply, HC devices are not quite 

compatible with TTL. In particular, HC circuits are designed to recognise 

CMOS input levels. The output levels produced by TTL devices do not quite 

match this range, so HCT devices use the different input levels. These levels 

are established in the fabrication process by making transistors with different 

switching threshold, producing the different transfer characteristics. 



  

Two more CMOS families, known as AC (Advanced CMOS) and ACT 

(Advanced CMOS, TTL compatible) were introduced in mid-1980s. These 

families are fast, comparable to ALSTTL, and they can source or sink more 

current than most of the TTL circuits can. Like HC and HCT, the AC and ACT 

families differ only in the input levels that they recognise; their output 

characteristics are the same. Also like HC/HCT, AC/ACT outputs have 

symmetric output drive.  

In the early 1990s, yet another CMOS family was launched. The FCT (Fast 

CMOS, TTL compatible) family combines circuit innovations with smaller 

transistor geometries to produce devices that are even faster than AC and 

ACT while reducing power consumption and maintaining full compatibility 

with TTL. There are two subfamilies, FCT-T and FCT2-T. These families 

represent a “technology crossover point” that occurred when the performance 

achieved using CMOS technology matched that of bipolar technology, and 

typically one third the power. Both the logic families are TTL compatible, 

which means that they conform to the industry-standard TTL voltage levels 

and threshold point (1.5 V), and operate from a 5 Volt VCC power source. All 

inputs are designed to have a hysterisis of  200 mV (low-to-high threshold of 

1.6 V and high-to-low threshold of 1.4V). This hysteresis increases both the 

static and dynamic noise immunity, as well as reducing the sensitivity to 

noise superimposed on slowly rising or falling inputs. Individual logic gates 

are not manufactured in the FCT families. Just about the simplest FCT logic 

element is a 74FCT138/74FCT138T decoder, which has six inputs, eight 

outputs and contains the equivalent of about twelve 4-input gates internally 

ELECTRICAL BEHAVIOUR OF CMOS CIRCUITS 

This section presents the electrical characteristics of CMOS families. The 

electrical characteristics refer to DC noise margins, fan out, speed, power 

consumption, noise, electrical discharge, open drain outputs and three state 

outputs. 

Logical Levels and Noise Margins: The generated voltage levels given by 

the manufacturing data sheet for HCMOS circuits operating at VDD = 5 V, are 

given in the Table 1. The input parameters are mainly determined by the 

switching threshold of the two transistors, while the output parameters are 

determined by the ON resistance of the transistors. These parameters apply 

when the device inputs and outputs are connected only to other CMOS 

devices. The dc voltage levels and noise margins of CMOS families are given 

in the Table 1. 

 



  

TABLE 1: DC Characteristics of CMOS Families 

Family VIHMIN VILMAX VOHMIN VOLMAX NM LOW 
@VCC =5V 

NM HIGH 
@VCC=5V 

Units 

4000B  2 3 V C 
1
3 VC VCC-0.1 0.01 1.6 1.6 V 

HCMOS 3.5 1.5 VCC-0.1 0.1 1.4 1.4 V 

HCTMOS 2 0.8 VCC-0.1 0.1 0.7 2.4 V 

ACMOS 3.5 1.5 VCC-0.1 0.1 1.4 1.4 V 

ACTMOS 2 0.8 VCC-0.1 0.1 0.7 2.4 V 

FCT 2 0.7 2.4 0.5 0.2 0.4 V 

 

These dc noise margins are significantly better than those associated with 

TTL families. As CMOS circuits can be operated with VDD = 2 V to VDD = 6 V 

the voltage levels associated with CMOS gates may be expressed as 

 VIL(max)  =  30% VDD 

 VOH(min)  =  VDD - 0.1 V 

 VIH(min)  =  70% VDD 

Regardless of the voltage applied to the input of a CMOS inverter, the input 

currents are very small. The maximum leakage current that can flow, 

designated as II max, is + 1µA for HCMOS with 5 V power supply. As the load 

on a CMOS gate could vary, the output voltage would also vary. Instead of 

specifying the output impedance under all conditions of loading the 

manufacturers specify a maximum load for the output in each state, and 

guarantee a worst-case output voltage for that load. The load is specified in 

terms of currents. The input and output currents are given in the Table 2. 

TABLE 2: Input and Output Current Levels of CMOS Families 

CMOS 
Families 

Input currents Output currents Units 

 IIH IIL IOH IOL  

4000b +5 0.001 0.001 -1.6@2.5 V 0.4@0.4 V mA 

74HC 0.001 -0.001 -4 @VCC-0.8 4@0.4 mA 

74HCT 0.001 0.001 -4@VCC-0.8 4@ 0.4 V mA 

74AC 0.001 -0.001 -24 @VCC-0.8 24@0.4 V mA 

74ACT 0.001 -0.001 -24 @VCC-0.8 24 @0.4 V mA 

74FCT 0.005 -0.005 -15@ 2.4 V 48@0.5 V mA 

 

These specifications are given at voltages which are normally associated with TTL 

gates. If the current drawn by the load is smaller, the voltage levels would improve 

significantly. This happens when CMOS gates are connected to CMOS loads. 



  

It is important to note that in a CMOS circuit the output structure by itself 

consumes very little current in either state, High or Low. In either state, one of the 

transistors is in the high impedance OFF state. When no load is connected the only 

current that flows through the transistors is their leakage current. With a load, 

however, current flows through both the load and the ON transistor, and power is 

consumed in both. 

Fan out: The fan out of a logic gate is the number of inputs that the gate can drive 

without exceeding its worst-case loading specifications. The fan out depends not 

only on the characteristics of the output, but also on the inputs that it is driving. 

When a HCMOS gate is driving HCMOS gates, we note that IILmax is +1 µA in any 

state, and IOHmax = -20 µA and IOLmax = 20 µA. Therefore, the Low-state fan out is 

20 and High-state fan out is 20 for HCMOS gates. However, if we are willing to 

work with slightly degraded output voltages, which would reduce the available 

noise margins, we can go for IOHmax and IOLmax of 4.0 mA. This would mean that an 

HCMOS gate can drive as many as 4000 HCMOS gates. But in actuality this would 

not be true, as the currents we are considering are only the steady state currents 

and not the transition currents. The actual fan out under degraded load conditions 

would be far less than 4000. During the transitions, the CMOS output must charge 

or discharge the capacitance associated with the inputs that it derives. If this 

capacitance is too large, the transition from Low to High (or vice versa) may be too 

slow causing improper system operation. 

CMOS DYNAMIC ELECTRICAL BEHAVIOUR 

Both the speed and the power consumption of CMOS devices depend on to a large 

extent on AC or dynamic characteristics of the device and its load, that is, what 

happens when the output changes between states. The speed depends on two 

factors, transition times and propagation delay. 

The rise and fall times of an output of CMOS IC depend mainly on two factors, the 

ON transistor resistance and the load capacitance. The load capacitance comes 

from three different sources: output circuits including a gate’s output transistors, 

internal wiring and packaging, have capacitances associated with them (of the 

order of 2-10 pF); wiring that connects an output to other inputs (about 1pF per 

inch or more depending on the wiring technology); and input circuits including 

transistors, internal wiring and packaging (2-15 pF per input). The OFF transistor 

resistance would be about 1 MΩ, the ON resistance of p-channel transistor would 

be of the order of 200 Ω, and the ON resistance of n-channel resistance would be 

about 100 Ω. We can compute the rise and fall times from the equivalent circuits.  

Several factors lead to nonzero propagation delays. In a CMOS device, the rate at 

which transistors change state is influenced both by the semiconductor physics of 



  

the device and by the circuit environment including input-signal transition rate, 

input capacitance, and output loading. The speed characteristics of CMOS families 

are given in the Table 3. 

TABLE 3: Speed Characteristics of CMOS families 

Family Prop. Delay 
(ns) 

Flip-Flop  
frequency 
(MHz) 

4000B 160   5 

HCMOS   22 25 

HCTMOS   24 25 

ACMOS     8.5 45 

ACTMOS     8 45 

FCTMOS     5.8(‘138) 60 

   

Device outputs in AC and ACT families have very fast rise and fall times. Input 

signals should have rise and fall times of 3.0 ns (400 ns for HC and HCT devices) 

and signal swing of 0V to 3.0V for ACT devices or 0V to VDD for AC devices. 

Obviously such signal transition times are a major source of analog problems, 

including switching noise and “ground bounce”. 

Power Consumption: A CMOS circuit consumes significant power only during 

transition, that is dynamic power dissipation is more. One source of dynamic power 

dissipation is the partial short-circuiting of the CMOS output structure. When the 

input voltage is changing from one state to the other, both the p-channel and n-

channel output transistors may be partially ON, creating a series resistance of 600 

Ω or less. During this transition period, current flows through the transistors from 

VDD to ground. The amount of power consumed in this way depends on the value of 

VDD, the frequency of output transitions, and an equivalent dissipation capacitance 

CPD as given by the manufacturer. 

 PT = CPD . V2
DD. f  

PT is the internal power dissipation given in watts, VDD is the supply voltage in 

volts, f is frequency of output transitions in Hz, and CPD is the power dissipation 

capacitance in farads. CPD for a gate of HCMOS is about 24 pF. This relationship is 

valid only if the rise and fall times of the input signal are within the recommended 

maximum values. 

Second source of dynamic power dissipation is the CMOS power consumption due 

to the capacitive load (CL) on the output. During the Low-to-High transition, 

current passes through the p-channel transistor to charge the load capacitance. 

Likewise, during the High-to-Low transition current flows through the n-channel 

transistor to discharge the load capacitor. During these transitions the voltage 



  

across the capacitor changes by + VDD. For each pulse there would be two 

transitions. As the currents are passing through the transistors, and capacitor itself 

would not be dissipating any power, the power dissipated due to the capacitive 

load is  

 
2

DD
L L

VP  = C . .2f
2

 

 2
L L DDP  = C .V .f  

The total dynamic power dissipation of a CMOS circuit is the sum of PT and PL: 

 PD = PT + PL 

    = 2 2
PD DD L DDC .V .f+C .V .f  

    =   2
PD L DD(C +C ).V .f  

In most applications of CMOS circuits, CV2f power is the main type of power 

dissipation. While CV2f type of power dissipation is also consumed by the bipolar 

circuits like TTL, but at low to moderate frequencies it is insignificant compared to 

the static power dissipation of bipolar circuits. 

Unlike other CMOS families, FCT does not have a CPD specification. However, ICCD 

specification gives the same information in a different way. The internal power 

dissipation due to transition at a given frequency f can be calculated by the formula  

 PT = VCC . ICCD . f 

This family also makes different speed grades of the same function available. 

Power dissipation characteristics of CMOS families operated at 5V are given in the 

Table 4. 



  

 

TABLE 4: Power Dissipation Characteristics of CMOS Families 

Parameter HC HCT AC ACT FCT Units 

Quiescent power 
dissipation 

      

‘00 0.0025 0.0025 0.005 0.005  mW 

‘138 0.04 0.04 0.04 0.04 7.5 mW 

     Power dissipation  
capacitance 

      

‘00 24 24 30 30  pF 

‘138 85 85 60 60  pF 

Dynamic power 
dissipation 

      

‘00 at 1 MHz 0.6 0.6 0.75 0.75  mW 

‘138 at 1 MHz 2.1 2.1 1.5 1.5 1.5 mW 

Total power 
dissipation 

      

‘00 at 100KHz 0.0625 0.0625 0.08 0.08  mW 

‘00 at I MHz 0.6025 0.6025 0.755 0.755  mW 

‘00 at 10 MHz 6.0025 6.0025 7.505 7.505  mW 

‘138 at 100KHz 0.25 0.25 0.19 0.19 7.5 mW 

‘138 at 1 MHz 2.14 2.14 1.54 1.54 9 mW 

‘138 at 10 MHz 21.04 21.04 21.04 21.04 30 mW 
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ECL Family

� Bipolar families prevent saturating transistors using 
Schottky diodes across the base-collector junctions 

� Current Mode Logic (CML) structure can be used to 
prevent saturation

� CML produces a small voltage swing, less than a volt, 
between low and high levels 

� CML switches current between two possible paths 
depending on the output state

� Introduced by General Electric in 1961
� The concept was refined by Motorola and others to 

produce present day�s 10K, 100K (ECL) families 
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ECL Family (2)

� They offer propagation delays as short as 1 ns 
� They are not as popular as TTL and CMOS mainly 

because they consume too much power 
� High power consumption has made the design of ECL 

super computers, such as CRAY as a challenge in 
cooling technology 

� ECL has poor power-speed product, does not provide a 
high level of integration

� ECL signals have fast edge rates requiring design for 
special transmission line effects

� ECL circuits are not directly compatible with TTL and 
CMOS
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Basic CML Circuit 

V
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� Two transistors are connected as a differential amplifier with a 
common  emitter resistor R3. 
� Input Low and High levels, are defined to be 3.6 and 4.4 V. 
� It produces output Low and High levels 0.6 V higher (4.2 and 5.0 V)
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2-input OR/NOR gate

Q1 Q2 V

V

R3

EE

BB

V E

= 4VQ3

V

V

V

A

B

R1 R2

OUT2

OUT1

CC = 5V

A

B

OUT1
OUT2

This circuit shown cannot meet the input/ output 
loading requirements effectively
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ECL 10K OR/NOR gate (ECL10102)

Q1 Q2

V

R3

E E

V E

Q3

A

B

R1 R2

V CC 1=0

D1

D2

R8
4.9k

V CC 2=0

R6
6.1k77950k

R2R1
50k 





245220 

RL1RL2

Vout1

Vout2
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ECL Families (Motorola)

MECL I in 1962
� It offered 8 ns gate propagation delay and 30 MHz toggle 

rates
MECL II in 1966 
� This family offered 4 ns propagation delay for the basic 

gate, and 70 MHz toggle rates 
MECL III in 1968 
� It offered 1 ns gate propagation delays and flip-flop 

toggle rates higher than 500 MHz
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ECL Families (Motorola)

MECL 10K series in 1971 
� It offered circuits with 2 ns propagation delays. Edge 

speed was slowed down to 3.5 ns.
MECL 10KH in 1981 
� It provides a propagation delay of 1 ns with edge 

speed at 1.8 ns and used process called MOSAIC. 
MECL 100K
� This family offers functions different from those offered 

by 10K series. This family operates with a reduced 
power supply voltage -4.5 V, has shorter propagation 
delay of 0.75 ns, and transition time of 0.7 ns. The 
power consumption per gate is about 40 mW.
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Subfamilies of MECL 10K

� 10100 and 10500 series (propagation delay of 2 ns, 
edge speed of 3.5 ns and flip-flop toggle rate of 160 
MHz) 

� 10200 and 10600 series (propagation delay of 1.5 ns, 
edge speed of 2.5 ns and flip-flop toggle rate of 250 
MHz) 

� 10800 series (propagation delay of 1 - 2.5 ns and edge 
speed of 3.5 ns)
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Electrical Characteristics
Values are specified at TA = 25oC and the nominal power supply 
voltage of VEE = -5.2 V. 
Its common-mode-rejection feature offers immunity against 
power-supply noise injection.

130150-1.03-1.62-1.47-1.16ECL 100K

150150-0.98-1.63-1.48-1.13ECL 10KH

125155-0.98-1.63-1.475-1.105ECL 10K

125155-0.98-1.63-1.475-1.105MECL III

NM High
mV

NM Low
mV

VOLmax
V

VOH max
V

VILmax
V

VIHmin
V

Family
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Loading Characteristics

55552650.5ECL 100K

22222650.5ECL 10KH

22222650.5ECL 10K

25253500.5MECL III

IOHmax
mA

IOLmax
mA

IIHmax
mA

IILmax
mA

Family
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Transition Times/ Propagation Delays

3000.750.75ECL 100K

2501.81ECL 10KH

NA3.51 - 2.5ECL 10K (10800)

2502.51.5ECL 10K
(10200&10600)

1603.52ECL 10K
(10100&10500)

50011MECL III

Flip-flop toggle rate
MHz

Edge speed
ns

Prop. delay
ns

Family
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Power Consumption

3040ECL 100K

2525ECL 10KH

4.62.3ECL 10K (10800)

3725ECL 10K
(10200&10600)

5025ECL 10K
(10100&10500)

6060MECL III

Power-speed 
product
pJ

Power dissipation 
per gate

mW

Family
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Key aspects of ECL

� Fast and balanced output edges
� Low output impedance 
� High drive capability
� Differential or single-ended operation
Limiting factors of ECL
� Negative rails 
� incompatibility with other devices 
� Need for the terminating rail (VTT) 
� Higher power dissipation
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ECL Family 

The key to propagation delay in bipolar logic family is to prevent the transistors in 

a gate from saturating. Schottky families prevent the saturating using Schottky 

diodes across the base-collector junctions of transistors. It is also possible to 

prevent saturating by using a structure called Current Mode Logic (CML). Unlike 

other logic families considered so far, CML does not produce a large voltage swing 

between low and high levels. Instead, it has a small voltage swing, less than a 

volt, and it internal switches current between two possible paths depending on 

the output state. 

The first CML logic family was introduced by General Electric in 1961. The concept 

was refined by Motorola and others to produce today’s 10K, 100K Emitter 

Coupled Logic (ECL) families. These ECL families are fast and offer propagation 

delays as short as 1 ns. In fact, through out the evolution of digital circuit 

technology, some type of CML has always been the fastest commercial logic 

family. However commercial ECL families are not nearly as popular as TTL and 

CMOS mainly because they consume too much power. In fact, high power 

consumption has made the design of ECL super computers, such as CRAY as 

much of a challenge in cooling technology as in digital design. In addition, ECL 

has poor power-speed product, does not provide a high level of integration, has 

fast edge rates requiring design for special transmission line effect, and is not 

directly compatible with TTL and CMOS. But ECL family continues to survive and 

in applications which require maximum speed regardless of cost. 

ECL Circuits 

Basic CML Circuit: The basic idea of current mode logic is illustrated by the 

inverter/buffer circuit in the figure 1. This circuit has both inverting (OUT1) and 

non-inverting output (OUT2). Two transistors are connected as a differential 

amplifier with a common emitter resistor R3. Let the supply VCC = 5 V, VBB = 4 V 

and VEE = 0 V. Input Low and High levels are defined to be 3.6 and 4.4 V. This 

circuit produces output Low and High levels 0.6 V higher (4.2 and 5.0 V). When 

VIN is high transistor Q1 is ON, but not saturated, and transistor Q2 is OFF. When 

Q1 is ON VE is one diode drop lower than VIN, or 3.8 V. Therefore, current through 

R3 is (3.8/1.3 KΩ) 2.92 mA. If Q1 has a β of 10, then 2.65 mA of this current 

comes through the collector and R1, so VOUT1 is 4.2V (Low) since the voltage 

across Q1 (= 4.2 - 3.8= 0.4 V) is greater than VCEsat,, Q1 is not saturated Q2 is off 

because of its base to emitter voltage (4.0 - 3.8 = 0.2 V) is less than 0.6 V. Thus 

VOUT2 is at 5.0 V (High) as no current passes through R2.    

         



2 

V

R2
330

R1
300

Q1 Q2 VV

V

R3
1.3K

Ω

Ω

Ω
OUT1
OUT2

IN

IN
BB

E

VEE = 0

= 5V

= 4V

    

FIG. 1: Basic CML inverter/buffer circuit 

When VIN is Low, transistor Q1 is OFF, and Q2 is ON but not saturated. VE will be 

one diode drop below VBB (4.0 - 0.6 = 3.4 V). The current trough R3 is (3.4/1.3 

KΩ =) 2.6 mA. The collector current of Q2 is 2.38 mA for a β of 10. The voltage 

drop across R2 is (2.38 x 0.33 =) 0.5 V, and VOUT2 is about 4.2 V. Since the 

collector emitter voltage of Q2 is (4.2 - 3.4 =) 0.8V, it is not saturated. Q1 is off 

because its base-emitter voltage is (3.6 - 3.4 =) 0.2 and is less than 0.6 V. Thus 

VOUT1 is pulled up to 5.0 V through R1. 

To perform logic with the basic unit of figure 1, we simply place additional 

transistors in parallel with Q1. Figure 2 shows a 2-input OR/NOR gate. If any 

input is High, the corresponding input transistor is active, and VOUT1 is Low (NOR 

output). At the same time, Q3 is off, and VOUT2 is High (OR output). However, the 

circuit shown in figure 2 cannot meet the input/output loading requirements 

effectively. 
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FIG. 2: CML 2-input OR/NOR gate 

ECL 10K Family: The most popular ECL family is designated as the ECL10K as it 

has 5-digit designations to its ICs. The ECL 10K OR/NOR gate is shown in the 

figure 3 

Q1 Q2

V

R3

E E

V E

Q3

A

B

R1 R2

V CC 1=0

D1

D2

R8
4.9k

V CC 2=0

R6
6.1k77950k

R2R1
50k Ω ΩΩ

Ω

245220 Ω Ω

RL1RL2

Vout1

Vout2

 

  FIG. 3: Two-input ECL 10K OR/NOR gate (10102) 

In this circuit, an emitter follower output stage shifts the output levels to match 

the input levels and provides very high current driving capability, up to 50 mA per 

output. An internal (R7, D1, D2, R8 and Q4) temperature, and voltage-

compensated bias network provides VBB (-1.29V) without the need for separate 

external power supply. The family is designed to operate with VCC= 0 (GND) and 

VEE = -5.2V. This improves noise immunity to power supply noise, because noise 
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on VEE is a “common mode” signal that is rejected by the input structure’s 

differential amplifier. 

A pull down resistor on each input ensures that of the input is left unconnected, it 

is treated as Low. The emitter-follower outputs used in ECL 10K require external 

pull-down resistors as shown in the figure. This is because of the fast 

transmission times (typically 2ns). The short transmission times require special 

attention as any interconnection longer than a few centimetres must be treated 

as a transmission line. By removing the internal pull-down resistor, the designer 

can now select a resistor that satisfies the pull-down requirements as well as 

transmission line termination requirements. The simplest terminator for short 

connections is to use a resistor in the range of 270 Ω to 2 KΩ.  

ECL SUBFAMILIES 

Motorola has offered MECL circuits in five logic families: MECL I, MECL II, MECL 

III, MECL 10000 (MECL 10K), and MECL 10H000 (MECL 10KH). The MECL I family 

was introduced in 1962, offering 8 ns gate propagation delay and 30 MHz toggle 

rates. This was the highest performance from any logic family at that time. 

However, this family required a separate bias driver package to be connected to 

each logic function. The ten pin packages used by this family limited the number 

of gates per package and the number of gate inputs. MECL II was introduced in 

1966. This family offered 4 ns propagation delay for the basic gate, and 70 MHz 

toggle rates. MECL II circuits have a temperature compensated bias driver 

internal to the circuits, which simplifies circuit interconnections. 

MECL III was introduced in 1968. They offered 1 ns gate propagation delays and 

flip-flop toggle rates higher than 500 MHz.  The 1 ns rise and fall times required a 

transmission line environment for all but the smallest systems. For this reason, all 

circuit outputs are designed to drive transmission lines and all output logic levels 

are specified when driving 50-ohm loads. For the first time with MECL, internal 

input pull down resistors are included with the circuits to eliminate the need to tie 

unused inputs to VEE.. 

Motorola introduced MECL 10K series in 1971 with 2 ns propagation delays. In 

order to make the circuits comparatively easy to use, edge speed was slowed 

down to 3.5 ns. Subsequently, the basic MECL 10K series has been expanded by 

a subset of devices with even greater speed. These subfamilies are 10100 and 

10500 series (propagation delay of 2 ns, edge speed of 3.5 ns and flip-flop toggle 

rate of 160 MHz), 10200 and 10600 series (propagation delay of 1.5 ns, edge 
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speed of 2.5 ns and flip-flop toggle rate of 250 MHz), and 10800 LSI family 

(propagation delay of 1 - 2.5 ns and edge speed of 3.5 ns) 

MECL 10KH family was introduced in 1981. This family provides a propagation 

delay of 1 ns with edge speed at 1.8 ns. These speeds, which were attained with 

no increase in power over MECL 10K, are due to both advanced circuit design 

techniques and new oxide isolated process called MOSAIC. To enhance the 

existing systems, many of the MECL 10KH devices are pin-out/functional 

duplications of the MECL 10K family. Also, MECL 10K/10KH are provided with 

logic levels that are completely compatible with MECL III. Another important 

feature of MECL 10K/10KH is the significant power reduction over both MECL III 

and the older MECL II. Because of the power reductions and advanced circuit 

design techniques, the MECL 10KH family has many new functions not available 

with the other families. 

The latest entrant to the ECL family is ECL 100K, having 6-digit part numbers. 

This family offers functions, in general, different from those offered by 10K series. 

This family operates with a reduced power supply voltage -4.5 V, has shorter 

propagation delay of 0.75 ns, and transition time of 0.7 ns. However, the power 

consumption per gate is about 40 mW. 

ELECTRICAL CHARACTERISTICS OF ECL FAMILY 

The input and output levels, and noise margins of ECL gates are given in the 

Table 1. These values are specified at TA = 25oC and the nominal power supply 

voltage of VEE = -5.2 V. 

TABLE 1: Voltage levels and noise margins of ECL family ICs  

  

The noise margin levels are slightly different in High and Low states. This 

specification by itself does not give complete picture regarding the noise 

immunity of a system built with a particular set of circuits. In general, noise 

immunity involves line impedances, circuit output impedances, and propagation 

delay in addition to noise-margin specifications. 

Family VIHmin 
V 

VILmax 
V 

VOH max 
V 

VOLmax 
V 

NM Low 
mV 

NM High 
mV 

MECL III -1.105 -1.475 -1.63 -0.98 155 125 

ECL 10K -1.105 -1.475 -1.63 -0.98 155 125 

ECL 10KH -1.13 -1.48 -1.63 -0.98 150 150 

ECL 100K -1.16 -1.47 -1.62 -1.03 150 130 
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Loading Characteristics: The differential input to ECL circuits offers several 

advantages. Its common-mode-rejection feature offers immunity against power-

supply noise injection, and its relatively high input impedance makes it possible 

for any circuit to drive a relatively large number of inputs without deterioration of 

the guaranteed noise margin. Hence, DC fan out with ECL circuits does not 

normally present a design problem. Graphs given by the vendor showing the 

output voltage levels as a function load current can be used to determine the 

actual output voltages for loads exceeding normal operation.  

Family IILmax 

µA 

IIHmax 

mA 

IOLmax 

mA 

IOHmax 

mA 

MECL III 0.5 350 25 25 

ECL 10K 0.5 265 22 22 

ECL 10KH 0.5 265 22 22 

ECL 100K 0.5 265 55 55 

 

Transition Times and Propagation Delays: The transition times and delays 

associated with different ECL families are given in the following. 

 

 

 

 

Family Prop. delay 
ns 

Edge speed 
ns 

Flip-flop 
toggle rate 

MHz 
MECL III 1 1 500 

ECL 10K 
(10100&10500) 

2 3.5 160 

ECL 10K 
(10200&10600) 

1.5 2.5 250 

ECL 10K 
(10800) 

1 - 2.5 3.5 NA 

ECL 10KH 1 1.8 250 
ECL 100K 0.75 0.75 300 

 

The rise and fall times of an ECL output depend mainly on two factors, the 

termination resistor and the load capacitance. Most of the ECL circuits typically 

have a 7 ohm output impedance and are relatively unaffected by capacitive 

loading on positive going output signal. However, the negative-going edge is 

dependent on the output pull down or termination resistor. Loading close to a ECL 

output pin will cause an additional propagation delay of 0.1 ns per fan-out load 
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with 50 ohm resistor to -2.0 Vdc or 270 ohms to -5.2 Vdc. The input loading 

capacitance of an ECL 10K gate is about 2.9 pF. To allow for the IC connector or 

solder connection and a short stub length 5 to 7 pF is commonly used in loading 

calculations. 

Power Consumption:  The power dissipation of ECL functional blocks as 

specified by the manufacturer does not include power dissipated in the output 

devices due to output termination. The omission of internal output pull-down 

resistors permits the use of external terminations designed to yield best system 

performance. To obtain total operating power dissipation of a particular functional 

block in a system, the dissipation of the output transistor, under load, must be 

added to the circuit power dissipation. The power dissipation and power-speed 

products of various ECL families are given in the Table 4 

 

 
Family 

Power dissipation  
per gate 

mW 

Power-speed 
product 

pJ 
MECL III 60 60 

ECL 10K 
(10100&10500) 

25 50 

ECL 10K 
(10200&10600) 

25 37 

ECL 10K (10800) 2.3 4.6 

ECL 10KH 25 25 

ECL 100K 40 30 
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We are familiar with

� How to express a verbal logical statement as a logical 
expression

� How to simplify a given logical expression using a variety 
of tools

� How to pictorially represent a logical function in terms of 
basic logic functions like AND, OR etc.

� How to perform a logical function using electronic circuits 
when the binary variables are presented by voltage 
levels
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Digital electronic circuits

Classified as:

 Combinational Circuits
 Sequential Circuits
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Combinational circuits

The output can be expressed as a logical expression in 
terms of the input variables 

� The present value of the output is dependent only on the 
present values of the inputs 

� All logical expressions consist of logical operations AND, 
OR and NOT.  

� Any logical expression can be realized using these three 
types of electronic gates.  
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Sequential Circuits

In a sequential circuit the outputs depend on 

� The present inputs 
� The sequence of all the past inputs
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Early era of digital design

�logic gates�

� were built with discrete devices
� were expensive
� consumed considerable power 
� occupied significant amount of space on the printed 

circuit board.  
� minimisation of the number of gates was one of the 

major design objectives
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Present day semiconductor 
technology

� The integration levels are very high
� The delay times are very low and coming down all the 

time
� Power consumed by them has been coming down.  
� Minimization of printed circuit board area is the major 

design objective
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Traditional minimisation methods

� Can help in locating problems like hazards and 
racing
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Combinational SSI, MSI and LSIs

� Gates
� Multiplexers 
� Demultiplexers
� Arithmetic Units
� Encoders and Code Converters
� Comparators
� Multipliers
� Programmable Logic Devices (PLDs)
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Hardware aspects: Electrical 
Parameters

� propagation delays
� power consumption
� supply voltage levels 
� currents
� tolerances (voltages and currents)
� loading 
� margins (noise)
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Hardware aspects: Mechanical 
Parameters

� Foot print
� Type of package 
� Pin pitch (distance between two adjacent pins)
� Thermal resistance
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Present day context of 
combinational circuits

� Interfacing (propagation delay should be minimum)
� The number of ICs of SSI and MSI level to be 

considerably restricted
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Learning Objectives

� Analyse and design combinational circuits using 
commercially available ICs belonging to LSTTL and 
HCMOS/HCTMOS families  

� Resolve issues related to interfacing 
� Learn to use Polarized Mnemonic Conventions 



Polarized Mnemonic 
Convention
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Learning objectives

� Explain the polarized mnemonic conventions of IEEE for 
representing logic variables and signals used in 
combinational circuits.

� Implement different logic functions with different logic 
gates.

� Explain the method of representing Mode signals and 
binary data unambiguously.

� State the advantages of polarized mnemonic convention.
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Standard Convention

Polarised Mnemonic Convention and logic symbology as 
per IEEE Std. 91/ ANSI Y32.14 

The standard convention has two components: 
� logic notation including signal designation, 
� symbols for digital functional units, available as SSI and 

MSI packages 



December 2006 N.J.Rao      M4L1 17

What is Truth Table?

$ % ;

�� �

� � �

� � �

� � �

Consider the OR function of two binary variables

Algebraic representation: Y = A + B

Truth table Logic Symbol

� It is simply a listing of the possible combinations of A and B 
� Has nothing to do with truth or falsehood of the variables   
� Appropriate to treat it as the input-output relation
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Logic variables represent Action

Examples of digital signals: START, LOAD, CLEAR etc.  
� These are indicative of actions to be performed
� We do not establish Truth or Falsehood of something  
It is appropriate to say 
� �when the signal LOAD is Asserted, the intended action 

of loading takes place�
� Asserted/ Not Asserted qualification is more 

appropriate 
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Interpretation of Truth Table

� Entry 0:  The variable Not Asserted
� Entry 1: The variable Asserted

A    B      X 
0     0      1         
0     1      0         
1     0      0        
1     1      0

Read the first entry as 
"X is Asserted when A AND B are Not Asserted" or 
"X is Asserted when A is Not Asserted AND B is Not 
Asserted". 
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Reading Logic Expressions

Consider Y = A. B/. C + A. B. C + A. B/. C/

� The first term A.B/.C is to be read as "A B prime C", 
� It is to be interpreted as "A Asserted AND B Not 

Asserted AND C Asserted"   
� A Not Asserted variable is shown in a logical expression 

with a prime (/) next to the mnemonic for the variable.
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Electronic Circuits and Logic 
Functions

� Electronic circuits are used to implement logic functions
� Currents and voltages are associated with these circuits
� Assertion and Not Assertion are associated with voltages
� Need to have a convention to associate voltages with 

logic variables
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Signal Convention

� The voltage levels associated with logic variables are not 
of a single value

� Normally a band of few hundred milli volts or even a few 
volts are associated with a logic state

� The more positive of the two voltage levels (voltage 
ranges) is designated as High Voltage (H) 

� The less positive of the two is designated as Low 
Voltage (L)

� The intended action can take place at either of the 
voltage level   

� This choice can be given to the designer
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Signal Convention(2)

Asserted High Signal
� It is Asserted when the voltage level is High (H) and Not 

Asserted when the voltage level is Low (L)  
Asserted Low Signal
� It is Asserted when its voltage level is Low (L) and Not 

Asserted when the voltage level is High (H)
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Convention

� No qualifying symbol or letter is added if the variable is 
Asserted High 

LOAD, CLR etc.
� /  is added before the mnemonic if the variable  is 

Asserted Low
/LOAD, /CLR
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Logic Gates

� Refer to physical electronic units that generate output 
voltage levels in a well-defined relationship to the input 
voltage levels 

� A given gate may perform a variety of logical functions 



December 2006 N.J.Rao      M4L1 26

2-Input AND Gate

HHH

LLH

LHL

LLL

YBA

&
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AND Gate with AH variables

111

001

010

000

YBA

The Truth-Table gets modified as

� X is Asserted only when A AND B are Asserted
� This AND gate performs AND operation on the two input variables
which are Asserted High to produce an output that is Asserted High 
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AND Gate with AL variables

000

110

101

111

/Y/B/A

The Truth-Table gets modified as

� /Y is Asserted when /A is Asserted OR /B is Asserted
� This AND gate performs OR operation on the two input variables 
which are Asserted Low to produce an output that is Asserted Low
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2-Input OR Gate

HHH

HLH

HHL

LLL

YBA

>
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OR Gate with AH variables

111

101

110

000

YBA

The Truth-Table gets modified as

� X is Asserted only when A OR B are Asserted
� This OR gate performs OR operation on the two input variables  
which are Asserted High to produce an output that is Asserted High 
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OR Gate with AL variables

000

001

010

111

/Y/B/A

The Truth-Table gets modified as

� /Y is Asserted when /A is Asserted AND /B is Asserted
� This OR gate performs AND operation on the two input variables 
which are Asserted Low to produce an output that is Asserted Low
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Logic Convention

� Positive Logic Convention: When all variables are 
treated as Asserted High  

� Negative Logic Convention: When all variables are 
treated as Asserted Low

� Polarised Mnemonic Convention permits the designer to 
have complete freedom in defining the Assertion levels 
of all signals
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Negation/Polarity Indicator

� As per the IEEE Standard "o" (bubble) or a  (small 
triangle) is used as a negation/polarity indicator

We use the bubble to represent polarity
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Output Signals

Incorrect examples

Presence of the polarity indicator at the output: The signal 
is as Asserted Low
Absence of the indicator at the output: The signal is as 
Asserted High

Correct examples
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Input Signals

Polarity indicator at the input of a logic unit   
� If an   Asserted High (AH) variable is given as input to a 

logic unit without polarising indicator, that variable 
appears Asserted in the output logic expression.   

� If an Asserted Low (AL) signal connected through a 
polarity indicator, that variable appears as Asserted in 
the output logic expression.
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Input Signals (2)

Asserted Low signal /LOCK and an Asserted High 
signal PTRL are ANDed to generate an Asserted Low 
output signal /STRT. 
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Input Signals (3)

� An AL variable connected to a logic unit without a 
polarity indicator appears as Not Asserted variable in the 
logic expression for the output.

� An AH variable connected through a polarity indicator 
appears as Not Asserted variables in the logic 
expression for the output.
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Examples of Input Signal 
Designations

/PRINCA = MINI/.CLR/.SEQ ACLR
SEQ A

 

MINI

PRINCA = MINI.MA.CLR/

 

MINI
MA
CLR

/PRIN1

/PRIN2
PRIN=PRIN1/+PRIN2
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Logic symbols in the Polarised 
Mnemonic Notation 

� The presence or absence of polarity indicators at 
the outputs.

� The presence or absence of polarity indicators at 
the inputs.

Each symbol has three distinct elements:
� Distinctive shaped logic symbol indicative of the logic    
operation being performed,

for AND           for OR
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Example

� The unit performs AND operation.
� The output variable is Asserted Low.
� The AND operation is performed on the Asserted Low 

input signals
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Some good practices

� The use of symbols as shown should be avoided.
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Exceptions

Mode Signals 
� Assigning Assertion levels is not meaningful   
� These signals are indicative of more than one action.  
� Different actions take place in both the states of the 

signals. 
� The two actions are mutually exclusive and one of the 

actions is always implied  

� Examples are R/W/, U/D/ and IO/M/.
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Read/Write (R/W) signal

R/W/: 
� when the signal takes `High voltage' (H) it is indicative of 

READ operation
� when it takes `Low voltage' (L) it is indicative of WRITE 

operation
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Binary Data

� We can not use Asserted or Not Asserted conventions 
with binary data

� Data line will either convey a numerical value of 0 or 1.  
� A data line, designated with mnemonics like DBIT-4
� When it takes High voltage it is considered having a 

numerical value of �1�
� When it takes Low voltage it is considered having a 

numerical value of `0'.
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Unused Inputs

� All inputs of an IC may not be utilized
� Unused inputs will have to be tied at known states.   
� In a 3-input OR gate that is used only as a 2-input OR 

gate, the unused input should be kept in Not Asserted 
state.    

� A high voltage input is shown by the letter H and a low 
voltage input is shown by the letter L. 
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Examples of unused inputs

The voltage level at which the unused inputs get tied 
to will depend on the assertion level of the signal.



COMBINATIONAL CIRCUITS 

INTRODUCTION 

We explored in the earlier learning units  

• How to express a verbal logical statement as a logical expression 

• How to simplify a given logical expression using a variety of tools 

• How to pictorially represent a logical function in terms of basic logic functions like 
AND, OR etc. 

• How to perform a logical function using electronic circuits when the binary 
variables are presented by voltage levels 

An electronic circuit can perform a logical function in extremely short periods of time 
(time taken from the application of inputs to the appearance of outputs). These 
periods are of the order of nanoseconds. We mainly use electronic circuits to perform 
logic functions because of their high speeds. 

The electronic circuits that perform logical functions are seen under two broad 
categories: 

o Combinational 

o Sequential 

The output of a combinational circuit can be expressed as a logical expression in 
terms of the input variables.   The present value of the output of a combinational 
circuit is dependent only on the present values of the inputs.   

The logical expressions mainly consist of logical operations AND, OR and NOT.  
Therefore, it is possible to physically realise any logical expression using these three 
types of electronic gates.   

In the early era of digital design “logic gates” built with discrete devices, were 
expensive, consumed considerable power and occupied significant amount of space 
on the printed circuit board on which these devices were mounted.  In those early 
days the minimisation of the number of gates was one of the major design objectives 
of Logic and Switching Theory.  The semiconductor technology, however, made these 
gates available in IC packages that occupy very little space and at very low costs.  As 
the technologies improved 

• The delay times associated with the logical devices have been coming down 

• Power consumed by them has been coming down.   

• More and more logic functions are getting integrated into a single package.   

This has drastically reduced the number of ICs needed to realise a given function.  
But the proportional cost of the printed circuit board on which these devices were 
getting assembled has been increasing.  Therefore, one of the main objectives of the 
present day combinational circuit design is to reduce the printed circuit board area 
needed for the logic circuits.  This implies reduction of the number of IC packages 
used rather than the number of gates.   

Because of these changes in technologies, the design and minimisation methods 
evolved by the traditional Logic and Switching Theory are not that relevant.  It may 
not be necessary to master the finer aspects of these methods, but a good working 
knowledge of these methods is still needed to analyse and design combinational 
circuits, even as per the new criteria.  Besides minimisation, these methods can 



greatly help in locating problems like hazards and racing, which are mainly the 
consequence of variations in the electrical characteristics of the physical devices 
used.   

Combinational integrated circuits are available in a wide functional and complexity 
range in SSI, MSI and LSI packages.  These may be classified as: 

• Gates 

• Multiplexers  

• Demultiplexers  

• Arithmetic Units 

• Encoders and code converters 

• Comparators 

• Multipliers 

• Programmable Logic Devices (PLDs) 

A digital designer must get himself thoroughly familiar with the functional and 
hardware aspects of these combinational ICs.  The hardware aspects relate to 
electrical parameters 

• propagation delays 

• power consumption 

• supply voltage levels  

• currents 

• tolerances (noise, voltages and currents) 

• loading  

Mechanical parameters are also important.  These include 

• foot print 

• type of package  

• pin pitch (distance between two adjacent pins) 

• thermal resistance 

The design of any digital circuit is not merely limited to the functional aspects.  For 
example the combinational circuits find applications, in the context of the present 
day microprocessors, mainly for the interfacing applications.  In such applications the 
propagation delay should be made minimum.  The designer will have to use less 
number of levels of gating and choose the appropriate logic family.  With the real 
estate at the printed circuit board level becoming more and more expensive the 
number of ICs of SSI and MSI level have to be considerably restricted.     

In this module you will mainly learn to analyze and design combination circuits using 
commercially available Gates, Arithmetic Units, Multiplexers, and Demultiplexers 
belonging to both LSTTL and HCMOS/HCTMOS families.  The issues related to 
interfacing between circuits belonging to different logic families, as well as 
interfacing with external world are also addressed.   

As there are two logic states and two voltage levels to represent them electrically, 
communication among digital designers can become very confusing if well-accepted 



conventions do not exist.  IEEE evolved standards for Logic Convention and 
Dependency Notation for Medium Scale Integrated Circuits.  While these conventions 
and notations have limited utility when working with the present day PLDs and 
FPGAs, it is advantageous to adhere to them whenever it is possible.   

Initially we will clarify issues related to logic and signal conventions, and then 
proceed to designing a variety of combinational circuits.  

The objectives of this learning unit are 

• Explain the polarized mnemonic conventions of IEEE for representing logic 
variables and signals used in combinational circuits. 

• Implement different logic functions with different logic gates. 

• Explain the method of representing ‘mode’ signals and binary data 
unambiguously. 

• State the advantages of polarized mnemonic convention. 



POLARIZED MNEOMONIC CONVENTION 

You need to present your solution to a design problem in the form of a schematic 
diagram. This schematic diagram will be used by the packaging designer to convert it 
into production documentation.  The schematic will also be used by the testing and 
maintenance engineers.  This interaction among many people concerned with a 
digital system requires that all of them have the same understanding of the 
functionality of the circuit. Therefore, we need a standard convention that 
unambiguously conveys the intentions of the designer to all the concerned while 
giving sufficient flexibility to the designer. Many such conventions were evolved in 
different textbooks and by different organisations. However, no universally accepted 
convention exists even today for drawing digital schematic diagram.   

Polarised Mnemonic Convention and logic symbology as per IEEE Std. 91/ANSI 
Y32.14, which is based on Dependency Notation, is the only international Standard 
that has evolved. Here we get ourselves familiar with this convention.  

Any standard convention has two components:  

• logic notation including signal designation,  

• symbols for digital functional units, available as SSI and MSI packages 

You are only familiar with the simple logic functions and logic gates.  You are urged 
to make efforts to confine to the conventions presented here, rather than resorting 
to exceptions.  The reward for this additional effort is the ability to communicate 
your design to others.  As you work out more and more examples from the later 
Modules, you should feel more comfortable with the convention. 

Consider an OR function of two binary variables A and B.   

Its algebraic representation is 

             Y = A + B 

Its truth table representation is      

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

The symbolic representation is 

 

The truth table presents a simple listing of the possible combinations of A and B 
rather than having anything to do with truth or falsehood of the variables concerned.   
It will be more appropriate if the truth table can be interpreted more as the input-
output relation of a logic function. With this understanding we will continue to use 
the word truth table.  

A digital system may more conveniently be considered as a unit that processes 
binary input actions and generates binary output actions.   Most hardware responses 
generally are either responses to some physical operation or some conditions 



resulting from physical action.   For example many of the signals that you come 
across in digital systems are of the type  

• START  

• LOAD  

• CLEAR  

These signals are indicative of actions to be performed rather than establishing the 
Truth or Falsehood of something.   

For example, to say when LOAD is true does not convey the intended meaning.  It 
appears more appropriate to say when the signal LOAD is Asserted, the intended 
action, namely, loading takes place.   

Therefore, Asserted/Not Asserted qualification is more meaningful and appropriate 
than the True/False qualification in the case of signals that clearly indicate action. 

The entries in the truth table can now be interpreted in a different manner.  

• The entry 0 is to be read as the corresponding variable Not Asserted 

• The entry 1 is to be read as the corresponding variable Asserted 

Consider the Truth Table given in the following. 

A B X 
0 0 1 
0 1 0 
1 0 0 
1 1 0 
   

We read the first entry in the table as  

"X is Asserted when A AND B are Not Asserted" or "X is Asserted when A is Not 
Asserted AND B is Not Asserted".    

Consider another example 

           Y = A. B/. C + A. B. C + A. B/. C/ 

The first term A.B/.C, to be read as "A B prime C", is to be interpreted as "A Asserted 
AND B Not Asserted AND C Asserted"    

Try interpreting the other terms of the expression. 

A Not Asserted variable will therefore be shown in a logical expression with a prime 
(/) next to the mnemonic for the variable.   Traditionally this is referred to as 
complementation. Let us note that it sounds right, and is appropriate to say a 
variable is Asserted or Not Asserted rather than Uncomplemented or Complemented.  



Electronic Circuits and Logic Functions 

We use electronic circuits to implement logic functions.  There are currents and 
voltages associated with these circuits.  We now explore the issues related to 
associating electrical variables with logic variables. 

Signal Conventions 

In an actual digital circuit the logic variables are represented as voltage levels.  
However these voltage levels are not of a single value.    Normally a band of few 
hundred millivolts or even a few volts will be associated with a logic state.  

The more positive of the two voltage levels (voltage ranges) is designated as High 
Voltage (H)  

The less positive of the two is designated as Low Voltage (L). 

The intended action associated with a variable can take place at either of the voltage 
levels.   This can be given as a choice to the designer. If the choice is to be made 
available, it is necessary to evolve a convention that unambiguously states at what 
voltage level a variable gets Asserted. 

If a signal is considered Asserted when the voltage level is High (H) and Not Asserted 
when the voltage level is Low (L), it is designated as Asserted High signal.   

Similarly if a signal is considered Asserted when its voltage level is Low (L) and Not 
Asserted when the voltage level is High (H), it is designated as Asserted Low signal.    

We will follow a simple convention: 

No qualifying symbol or letter is added if the variable is Asserted High, for example 
LOAD, CLR etc. 

/ is added before the mnemonic if the variable is Asserted Low, for example /LOAD, 
/CLR 

  

Logic Gates 

Logic gate refers to a unit of hardware that generates output voltage levels in a well-
defined relationship to the input voltage levels. A given gate may perform a variety 
of functions depending upon the Assertion levels of the input and output signal 
levels.   

Consider an AND Gate   

Figure shows a two input AND gate and the relationship between the input and 
output voltage levels. 

 

 

 



Let us assume the input and output variables are Asserted High. The corresponding 
truth table can be written as; 

A B X 
0 0 0 
0 1 0 
1 0 0 
1 1 1 

 

We can draw the following conclusions from this truth table: 

X is Asserted only when A AND B are Asserted 

This AND gate performs AND operation on the two input variables which are Asserted 
High to produce an output that is Asserted High.    

If A, B and X are Asserted Low variables, then the truth-table for the same gate 
would be   

/A /B /X 
1 1 1 
1 0 1 
0 1 1 
0 0 0 

 

From the truth table we notice that  

/X is Asserted when /A is Asserted OR /B is Asserted.   

This AND gate performs OR operation on its input variables which are Asserted Low.  

Consider an OR gate  

Figure shows a two input OR gate and the relationship between the input and output 
voltage levels 

≥

 

 

If A, B and X are Asserted High, then the truth-table can be written as 

A B X 
0 0 0 
0 1 1 
1 0 1 
1 1 1 

 

We can draw the following conclusions from this truth table:  

• X is Asserted when A OR B is Asserted,  



• This gate performs OR operation on the Asserted High variables.  

When the variables A, B and X are Asserted Low, the Truth Table can be written as 

              

/A /B /X 
1 1 1 
1 0 0 
0 1 0 
0 0 0 

 

/X is Asserted only when /A AND /B are Asserted  

This gate performs AND operation on Asserted Low variables.    

In a similar manner each one of the available hardware gates can be used   to 
perform more than one logic operation.   From these two examples it is clear that the 
name given to the hardware gate corresponds to the function it performs on 
Asserted High inputs to generate an Asserted High output. 

Exercises: 

1. Find out the function performed by a 2-input NAND gate if its input and 
output variables are Asserted High? 

2. Find out the function performed by a 2-input NAND gate if its input and 
output variables are Asserted Low? 

3. Find out the function performed by a 2-input NAND gate if its input variables 
are Asserted High and its output variable is Asserted Low? 

4. Find out the function performed by a 2-input NOR gate if its input and output 
variables are Asserted High? 

5. Find out the function performed by a 2-input NOR gate if its input and output 
variables are Asserted Low? 

6. Find out the function performed by a 2-input NOR gate if its input variables 
are Asserted High and its output variable is Asserted Low? 

7. Find out the function performed by a 2-input Ex-NOR gate if its input and 
output variables are Asserted High? 

8. Find out the function performed by a 2-input EX-NOR gate if its input and 
output variables are Asserted Low? 

9. Find out the function performed by a 2-input NOR gate if one of its input 
variables is Asserted High and the other is Asserted Low, and its output 
variable is Asserted High? 

 



LOGIC CONVENTION 

Logic variables can be Asserted High or Asserted Low.  Therefore, depending on our 
preference we can have different conventions. 

• If all variables are treated as Asserted High, we call it as Positive Logic 
Convention.  Traditionally digital circuits were mostly designed with Positive 
Logic Convention.   

• If all variables are treated as Asserted Low, we call it as Negative Logic 
Convention. Sometimes designers found it convenient to design some parts of 
a digital circuit using Negative Logic Convention.   

Whenever it became necessary to combine circuits designed under different 
conventions there were always possibilities of confusions in handling the interface.  

• If the Assertion level a signal can be chosen by the designer we call it Polarised 
Mnemonic Convention. 

Negation/Polarity Indicator:  As per the IEEE Standard "o" (bubble) or       a (small 
triangle) is used as a negation/polarity indicator as shown in the figure 1. 

 

    

FIG. 1: Convention for indicating the negation of the output 

We prefer to use the "o" (bubble) as the negation/polarity indicator. 

Output Signals:  

• The absence of the polarity indicator at that output of a logic unit defines that 
signal at that point as Asserted High.  

• The presence of the polarity indicator at the output of a logic unit defines the 
signal at that point as Asserted Low 

Typical correct examples are shown in the figure 2. 

    
 /CLRSTRT

 

FIG 2: Correct method of indicating the polarities of the outputs 

It is incorrect  

• To designate an output signal as Asserted High if the polarity indicator is 
present  

• To designate a signal as Asserted Low if no polarity indicator is present 

Examples of incorrect designation, which should never be used, are given in the 
figure 3. 



/CLRSTRT
 

 

FIG. 3: Incorrect method of indicating the output polarities 

Input Signals:  

The usage of polarity indicator at the input of a logic unit depends on whether the 
variable connected to that input appears in the logic expression for the output 
variable, as Asserted or Not Asserted.    

• If an   Asserted High (AH) variable is given as input to logic unit without polarising 
indicator, that variable appears Asserted in the output logic expression.    

• If an Asserted Low (AL) signal connected through a polarity indicator, that 
variable appears as Asserted in the output logic expression.   

In the example shown in the figure an Asserted Low signal /LOCK and an Asserted 
High signal PTRL are ANDed to generate an Asserted Low output signal /STRT.   

/STRT/LOCK
PTRL  

     

• An AL variable connected to a logic unit without a polarity indicator appears as 
Not Asserted variables in the logic expression for the output. 

• An AH variable connected through a polarity indicator appears as Not Asserted 
variables in the logic expression for the output.   

Some examples are shown in the figure 4. 

 

/PRINCA = MINI/.CLR/.SEQ ACLR
SEQ A

 

MINI

PRINCA = MINI.MA.CLR/

 

MINI
MA
CLR

/PRIN1
/PRIN2

PRIN=PRIN1/+PRIN2

 

FIG. 4: Examples of logic functions drawn as per polarized mnemonic convention 

In interpreting the logic symbols in the Polarised Mnemonic Notation each symbol 
can be considered to have three distinct elements: 

• Distinctive shaped logic symbol indicative of the logic operation being 
performed, 

   

  for AND  for OR. 



 The presence or absence of polarity indicators at the outputs. 

 The presence or absence of polarity indicators at the inputs. 

Consider the following symbol; 

    

• The unit performs AND operation. 

• The output variable is Asserted Low. 

• The AND operation is performed on the Asserted Low input signals. 

Some good practices: 

Though incompatibility at the inputs of any logic functional unit is permissible, its 
usage should be avoided in the case of inverters as it is likely to lead to unnecessary 
confusions without offering any advantage.  The use of symbols shown in the 
following figure should be avoided.  

  

CLR /CLR /LOAD LOAD
         

 

Exceptions: 

Mode Signals:  There is one class of signals, designated as MODE signals, for which 
assigning Assertion levels is not meaningful.   These signals are indicative of more 
than one action.  Different actions take place in both the states of the signals.   
Typical examples are R/W/, U/D/ and IO/M/.  

In the case of R/W', when the signal takes `High voltage' (H) it is indicative of READ 
operation, and when it takes `Low voltage' (L) it is indicative of WRITE operation.   
These two operations are mutually exclusive and one of the operations is always 
implied. 

UP/DOWN/ signal is encountered in the counters.  When U/D' takes H the counter 
counts up, and when it takes L the counter counts down.  

Usage of such signals should be kept to a minimum.  A more convenient way of 
designating such signals is to say MODE 0, MODE 1 etc.    

Binary Data: Digital systems process binary data besides binary signals.   It does 
not sound appropriate to state that a data bit is Asserted or Not Asserted.  The line 
will assume High or Low voltage values as per the numerical value of that data bit.  
In this sense it is more like the mode signal, which implies different actions in 
different states of the signal.  In this case of data line it will either convey a 
numerical value of 0 or 1.  A data line, designated with mnemonics like DBIT-4, is 
always Asserted High signal, i.e., when it takes High voltage it is considered having a 
numerical value of ‘1’ and when it takes Low voltage it is considered having a 
numerical value of `0'.   

Unused Inputs: Integrated circuits are available in standard SSI and MSI packages. 
These ICs are designed to have widest possible applicability.  Therefore, all the 



inputs and capabilities may not be used every time an IC is incorporated into a 
circuit.   The unused inputs of such IC gates as well as sequential circuits will have to 
be tied at known states.   For example, if a 3-input OR gate is used only as a 2-input 
OR gate, the unused input should be kept in Not Asserted state.   This may 
correspond to a high voltage or a low voltage. A high voltage input is shown by the 
letter H and a low voltage input is shown by the letter L.   A few examples with gates 
are shown in the figure 5. 

L
A1
B2

L
/A2
/B1 

H
A1
B1

 
FIG. 5: Examples of designating unused inputs 

The voltage level at which the unused inputs get tied to will depend on the assertion 
level of the signal. 
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Implementation of Logic Functions

� Logic functions can be implemented in any one of the 
available logic families 

� LSTTL and HCMOS family ICs are used for the medium 
frequency applications 

� FAST series and Schottky series ICs are used at higher 
frequencies

With
 LSIs are becoming popular 
 Cost per gate coming down drastically

Need for conventional type of minimisation is much less
Tractability of the design becomes more important 
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Combinational ICs

� Gates are available as SSIs
� Adders, multiplexers, comparators and encoders are 

available as MSIs
� SSI gates are mainly used for realising simple logic 

functions normally encountered in interconnecting LSI 
and MSI circuits. 
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Available Gates

LSTTL FAST HCMOS 
54/74LS       54/74F  54/74HC 

NAND Gates
Quad 2-input NAND      00  00 00A 
Triple 3-input NAND     10  10 10
Dual 4-input NAND      20  20 20
8-input NAND        30  --- 30      
13-input NAND        133 --- 133      

NOR Gates
Quad 2-input NOR      02  02 02A   
Triple 3-input NOR     27  --- 27 
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Available Gates (2)

LSTTL FAST HCMOS 
54/74LS      54/74F  54/74HC 

AND Gates 
Quad 2-input AND      08  08 08A     
Triple 3-input AND     11  11 11
Dual 4-input AND      21    21 ---
OR Gates
Quad 2-input OR       32  32 32A     
Inverters 
Hex inverter       04  04 04A 
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Gate level implementation of logic 
functions

� Logical expressions are available either in the SOP form 
POS form.  

Consider the expression:
STRT = PTRL.IGNI.NEUTR/.KICK + PTRL.IGNI.SLOP. 

NEUTR/.LOCK/

It is not in canonical form 

It can be realized by AND, OR and INVERT gates 
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Realization by AND, OR and invert 
Gates
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Using commercially AND,OR and 
NOT gates 

1(875

,*1,
375/

/2&.

6/23

.,&.

6757
+

We need a 3-level gating and it increases delay
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Realization by AO gates
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AOI gates

Dual 2-wide 2-input AOI     7451/LS51/S51/ 
HC51 

Expandable Dual 2-input 2-wide AOI 7450 
Expandable 2-wide 4-input AOI      74LS55
4-wide 2-input AOI     7454/LS54
Triple 3-input Expander   7461
Dual 4-input Expander   7460

4-2-3-2 input AOI     74S64
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Realization by AOI gates

� It does not necessarily reduce the chip count
� LSTTL family does not offer many varieties of AO or AOI 

gates.
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Realization of SOP form by NANDs
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NAND and INVERTER realization
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Realization of POS form by NOR 
gates

STRT = PTRL+IGNI+NEUTR+KICK) .     
(PTRL+IGNI+SLOP+NEUTR+LOCK)
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Ex-OR realization

Parity checker
EP = A    B     C    D    E

It�s canonical version
EP =A B C D E + A B C / D / E + A B C / D E / + A B 
C D / E / +  A/ B / C / D / E + A / B / C / D E / +          
A / B / C D / E / + A / B / C D E +A B / C / D / E / +    
A B / C D E / + A B / C D / E + A B / C / D E +
A / B C / D / E / + A / B C D E / + A / B C D / E +       
A / B C / D E
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Parity checker with Ex-OR

74LS86/HC86s (Quad 2-input EX-OR)

Multiple levels
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At this stage of design

Choice of gates in realising logical expressions should be 
based on 

� number of chips needed to realize the expression
� number of varieties of chips to be kept in the inventory
� number of levels of gating (the maximum number of 

gates that an input signal has to pass through in a 
circuit) needed to realize the expression
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Delay
Input-Output relationship of an inverter
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Manufacturer�s specifications

74LS04 
TYP MAX

tPHL - 9.5     15     ns
tPLH - 9.5     15     ns

� Typical value is not a guaranteed value and hence 
cannot be used as a design parameter  

� The designer has to work with the worst case values for 
these propagation delays

� Manufacturers do not guarantee any minimum delay 
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Problems of minimum delay
Digital differentiator

What will be the width of the output pulse? 
� With typical values: 9.5 x 3 = 28.5 ns. 
� With maximum values: 15 x 3 = 45 ns. 
� It can be any value from 0 to 45 ns. 
Such a circuit cannot be used
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Delays and different realizations

Expression in SOP form can be realized 
� By 2-level gating if the variables are available in their 

Asserted High and Asserted Low versions
� By 3-level gating if the variables are not available in their 

Asserted High and Asserted Low versions
In all other forms the delay is likely to be more
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Expression in non-canonical form

STRT = PTRL. IGNI. ([NEUTR.KICK] + 
[SLOPE.NEUTR/.KICK/])

Minimization of propagation delay may not always be 
a design objective. 
The form of the expression may be chosen to make 
the design more easily understandable.
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Specification of delay

Normally the delays for LSTTL family are defined at 
T = 25o C, V = 5 volts, C = 15 pF, and R = 2 K 

For HCMOS family the delay times are specified at nine 
operating points (three voltages and three temperatures)

VCC = 2.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, 
CL = 50 pF, Input tr = tf= 6 ns

VCC = 4.5 V, T: 25o C to -55o C, < 85o C, and < 125oC, 
CL = 50 pF, Input tr = tf= 6 ns

VCC =6.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, 
CL = 50 pF,  Input tr = tf= 6 ns
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Test circuit

Test circuit with which these delays are measured

VccVcc

Vout

D

DUT
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Load capacitance

Depends on 
 PCB track width and the length, 
 material of the laminate.  

It varies from 20 pF to 150 pF. 
Its effect is

 to increase the propagation delay 
 to increase supply current spike amplitude during the 

transients
Depending on the load circuit, capacitive loading and 

temperature the propagation delays can increase by as 
much as 15 ns.
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Dependence of the propagation 
delay

Its dependence on the load capacitance
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Glitches in the outputs

� The output is considered only after all the transients that 
are likely to be produced when the state of the inputs 
signals change. 

� Finite delays make the transient response of a logic 
circuit different from steady state behaviour. 

� These transients occur because different paths from 
input to output may have different propagation delays. 

� These differences in the propagation delays can produce 
short pulses, known as glitches.

� The steady state analysis does not predict this 
behaviour. 
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Hazard

� A hazard is said to exist when a circuit has the possibility 
of generating a glitch. 

� The actual occurrence of the glitch and its pulse width 
depend on the exact delays associated with the actual 
devices used in the circuit. 

� Designer has no control over this parameter
� It is necessary to design that avoids the occurrence of 

glitches. 
� One simple method is not to look at the outputs until they 

settle down to their final value.
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Example
Consider the expression X = A B/ + BC/D/
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Detection of hazard

� Hazard is caused by the propagation delay associated with the gate-1 
� Let A and B be Asserted and C and D are Not-asserrted. 
� When B changes from its Asserted state to its Not-asserted state with 

the other variables remaining the same the output should remain in its 
Asserted state. 

� When B changes from 1-to-0 the output of the gate-5 changes from  
1-to-0. 

� The output of the gate-4 should change from 0-to-1 at the same time.  
� But the delay associated with the gate-1 makes this transition of the 

gate-4 output to happen a little later than that of gate-5.  
� This can cause brief transition of X from 1-to-0 and then from 0-to-1
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Types of Hazards

� Static-1 hazard: When the output is expected to 
remain in state 1 as per the steady state analysis it 
makes a brief transition to 0
� Static-0 hazard: When the output is expected to 
remain in state 0 as per the steady state analysis it it
makes a brief transition to 1. 
� Dynamic hazard: When the output  is supposed to 
change from 0 to 1 (or 1 to 0), the circuit may go 
through three or more transients to produce more 
than one glitch
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Analysis using K-Map

X = A B/ + BC/D/

Hazard associated with the 
1-to-1 transition occurred 
when the change of state of 
the variable B caused the 
transition from one grouping 
BC/D/ to another grouping 
AB/. 
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Detection of other hazards

� It is more difficult to detect the other three transitions.  
� One result from Logic and Switching Theory states that a 

two level gate implementation of a logical expression will 
be hazard free for all transitions of the output if it is free 
from the hazard associated with 1-to-1 transition. 

� When the input variables change in such manner as to 
cause a transition from one grouping to another 
grouping, the 1-to-1 transition can occur
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Eliminating hazards

� In a two level gating realization of a 
logical expression include all 1s which 
are unit distance apart at least in one 
grouping 
� Group the terms ABC/D/and AB/C/D/

together
� This would lead to an additional gate
� The added gate defines the output 
during the transition of B from one state 
to the other
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Hazard free realization

X = AB/ + BC/D/  X = AB/ + BC/D/ + AC/D/
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Loading

� A logic gate has limited capacity to source and sink 
current at its output.

� The output current capability of LSTTL gate is
IOH = - 400 mA at VOH = 2.7 volts
IOL =    4 mA at VOL = 0.4 volts

=    8 mA at VOL = 0.5 volts
IIH = 20 mA
IIL = -0.4 mA

� At VOL = 0.4 V LSTTL gates have 2.5 UL capability and 
can drive 10 LSTTL gates

� At VOL = 0.5 V LSTTL gates have 5UL capability and can 
drive 20 LSTTL gates 
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HCMOS gates

Iin = + 0.1 A at VCC = 6.0 V 
IOH = - 4.0 mA at VOH= 3.98 V with VCC = 4.5 V and T: -55o to 25o C           

at VOH= 3.84 V with VCC = 4.5 V and T: < 85oC        
at VOH = 3.70 V with VCC = 4.5 V and T: < 125oC 

= - 5.2 mA at VOH = 5.48 V with VCC = 6.0 V and T: -55o to 25oC 
at VOH = 5.34 V with VCC= 6.0 V and T: <  85oC
at VOH = 5.20 V with VCC = 6.0 V and T: < 125o C 

IOL = 4.0 mA at VOL = 0.26 V with VCC = 4.5 V and T: 25o to -55o C,    
at VOL = 0.33 V with VCC = 4.5 V and T: < 85oC 
at VOL = 0.40 V with VCC = 4.5 V and T: < 125oC

= 5.2 mA at VOL = 0.26 V with VCC = 6.0 V and T: 25o to -55oC 
at VOL = 0.33 V with VCC = 6.0 V and T: < 85oC 
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Buffers

Quad 2 - input NAND Buffer - 74LS37 

Dual  4 - input NAND Buffer - 74LS40
These have an output current capability of

IOL =   24 mA
IOH = - 1200mA

� They can drive as many as 60 LSTTL loads. 
� Propagation delay: tPHL = tPLH = 24 n secs against the 

usual 15 n secs
� To drive a load beyond the capability of a buffer, discrete 

components have to be used.
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Output Voltages
The worst case VOH = 2.7 V in LSTTL family

= 5.5 V in case of HCMOS if 6.0 V is
used as power supply

If larger output voltages are required use open-collector gates

A

B

v c c

Open collector terminal can be connected to the 

desired supply voltage(< V
OH(max)

) through a suitable load resistor
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Available open collector LSTTL 
gates 

� Quad 2-input NAND(OC) - 74LS03 [VOH (max) = 5.5  V, IOL = 8 mA] 
� Quad 2-input NAND(OC) - 74LS26 [VOH (max) = 15  V, IOL = 18 mA] 
� Hex Inverter (OC)            - 74LS38 [VOH (max) = 5.5  V, IOL = 24 mA] 
� Hex Inverter/Buffer (OC) - 7406    [VOH (max) = 30  V, IOL = 40 mA]

� Hex Buffer (OC) - 7407   [VOH (max)= 30  V, IOL = 40 mA]

The HCMOS and HCTMOS families do not offer many open drain 
circuits
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Delay associated with OC gate
74LS26 operated at VCC of 5 V, RL = 2 K and CL = 15 pF
has tPLH = 32 ns (max) and a tPHL = 28 ns (max) against tPHL
= tPLH = 15 ns (max) 

A

B

vcc vC
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Tristate Gates

OC gates have limitations 
 with regard to the speed
 the distance between the modules, 
 every signal line requires the usage of a suitable load 

resistor
� Tristate logic elements provide a solution to the 

problems of speed and power in bus organized digital 
systems.
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TSL buffers

LSTTL         HCMOS          HCTMOS 

� Quad 3-state noninverting buffer       74LS125A   74HC125A 
� Quad 3-state noninverting buffer       74LS126A   74HC125A 

� Octal 3-state inverting buffer/

line driver/line receiver  74LS240     74HC240A     74HCT240A
� Octal 3-state Noninverting buffer/ 

line driver/line receiver 74LS241       74HC241     74HCT241A 

� Octal 3-state inverting bus

transceiver 74LS242    74HC242

� Octal 3-state noninverting buffer/ 

� line driver/line receiver         74LS244    74HC244A    74HCT244A
� Octal 3-state noninverting bus 

transceiver 74LS245    74HC245A    74HCT245 
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TSL buffers

� Hex 3-state noninverting buffer 
with common enables   74LS365A  74HC365 

� Hex 3-state inverting buffer 
with common enables         74LS366A  74HC366

� Hex 3-state noninverting buffer 
with 2-bit and 4-bit sections     74LS367A   74HC367 

� Hex 3-state inverting buffer 
with 2-bit and 4-bit sections     74LS368A  74HC368

� Octal 3-state inverting buffer/ 
line driver/line receiver     74LS540    74HC540    74HCT540

� Octal 3-state noninverting buffer/ 
line driver/line receiver   74LS541    74HC541   74HCT541

� Octal 3-state inverting bus 
transceiver 74LS640   74HC640A   74HCT640
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TSL Gate: Characteristics

In Hi-z state the maximum leakage current at the output, 
which occurs when it is tied to a gate whose output is 
low-impedance High state, is +20 A
 sources 2.6 mA at a VOH of 2.7 V, and 
 sinks 24 mA at VOL of 0.5 V and 12 mA at a 

VOL of 0.4 V.
This will permit as many as 128 tristate logic (TSL) outputs 

to be tied to a common bus and still provide enough 
sourcing current to drive three LSTTL loads.  
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TSL Gate: Characteristics

If one device is ON and 127 are OFF the following is valid:

127 x 20A          = 2.54 mA
2.6 mA - 2.54 mA = 60A 

= 3 x 20 A (LSTTL)
� The TSL output will be able to drive reliably a line over 3 

meters long 
� Provides a far superior High level noise immunity 
� Delay from Inhibit to Output Disable, 20 ns(max) 

� Delay from Enable to Low State, 25 ns(max)



INTRODUCTION 

Logic functions that represent combinational functions can be implemented as 
hardware in any one of the several logic families that are commercially available. The 
logic families that are widely used for the medium frequency (up to about 25 MHz) 
applications are 

 LSTTL  

 HCMOS  

Higher frequency requirements are met by 

 FAST series  

 Schottky series 

74LSTTL ICs are designed to operate over the commercial temperature range, 
namely, from 0oC to 70oC.  

54LS TTL ICs are functionally and pin-to-pin compatible with 74LS units, but operate 
over the Military temperature range, namely, -55oC to +125oC.  

HCMOS family ICs are also available in the same temperature range.  

Before the advent of the microprocessors and programmable LSI combinational 
circuits (PROMs, PLAs and PALs) digital designers had to be content with gates to 
realise complex combinational circuits. It was, therefore, necessary to simplify the 
expressions to reduce the number of gates or the number of ICs.  When the number 
of variables was smaller, designers used Karnaugh Maps or Variable Entered 
Karnaugh Maps (VEM). When the variables were large in number it was necessary to 
use computer based minimisation techniques.   

With LSI combinational circuits becoming popular and the cost per gate coming down 
drastically, the need for conventional type of minimisation is much less, the 
tractability of the design became more important. The given logical expressions can 
now be implemented, however complex they are, using programmable combinational 
LSI circuits, and keep the chip count low. 

Certain standard combinational functions like adders, multiplexers, comparators and 
encoders are available in MSI packages.  Therefore, realisation of these commonly 
encountered combinational functions need not be done by gates. In view of the 
availability of certain standard MSI and LSI circuits the SSI gates are mainly used for 
realising simple logic functions normally encountered in interconnecting LSI and MSI 
circuits. Design with these gates, therefore, is done predominantly on an intuitive 
basis, and occasionally using K-Maps or VEMs.  

Gates available in the 74 series of LS and HCMOS/HCTMOS families are listed in the 
following. 

 LSTTL FAST     HCMOS    HCTMOS  
 54/74LS    54/74F        54/74HC   54/74HCT 
NAND Gates 
Quad 2-input NAND       00   00               00A      --- 
Triple 3-input NAND      10   10 10   --- 
Dual 4-input NAND       20   20 20       --- 
8-input NAND         30   --- 30       --- 
13-input NAND         133  --- 133      ---  

NOR Gates 



Quad 2-input NOR       02   02 02A     --- 
Triple 3-input NOR      27   --- 27       --- 

AND Gates  
Quad 2-input AND       08   08 08A      --- 
Triple 3-input AND      11   11 11       --- 
Dual 4-input AND       21     21 ---  ---  

OR Gates 
Quad 2-input OR        32   32 32A      --- 

Inverters  
Hex inverter        04      04      04A         04A 

 



GATE LEVEL IMPLEMENTATION OF LOGIC EXPRESSIONS 

Logical expressions are available in  

 Sum-of-Product (SOP) form  

 Product-of-Sum (POS) form 

But the expressions we have may or may not be in canonical form.  By canonical 
form we mean sum of Minterms in the case of SOP form, and product of Maxterms in 
the case of POS form. If they are not in the canonical form they would have been 
arrived at either heuristically or after simplification through a K-Map or a Variable 
Entered Map. Consider the following expression: 

 STRT = PTRL.IGNI.NEUTR/.KICK + PTRL.IGNI.SLOP.NEUTR/.LOCK/  

It may be noticed that this expression is not in canonical form. It can be realized by 
AND, OR and INVERT gates as shown in the figure 1.   
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 FIG. 1: AND-OR-INVERT realization of a logical expression 

We have several problems in realizing this circuit using commercially available gates. 

 AND gates with five inputs are not available in LSTTL and HCMOS families.   

We can add an extra AND gate with three inputs to overcome the problem of 5-input 
AND gate. Consider the circuit shown in the figure 2. We now have an extra level of 
gating. An extra level of gating would always add to the input to output delay. We 
will address this problem of delay at a later state. 

     

  

 

 

 

 

 

 

FIG. 2: Implementation of the expression for STRT with commercially available gates 

Any logic expression in SOP form can essentially be considered to be ANDing of 
different groups of variables and ORing the outputs of the AND gates.  Therefore, it 
was considered convenient to make available in the same package and AND and OR 
gates suitably interconnected as shown in the figure 3. 
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  FIG. 3: AO realization of logical expression for START 

In some cases the inverted output is made available by incorporating an INVERTER 
along with AND and OR gates in the same package. Such gate packages are known 
as AO (AND-OR) or AOI (AND-OR-INVERT) gates. In fact several such gates were 
made commercially available.  They include 

 Dual 2-wide 2-input AOI      7451/LS51/S51/HC51  

 4-wide 2-input AOI          7454/LS54 

 4-2-3-2 input AOI          74S64 

But there is problem here. It is not always possible to have the required number of 
inputs or AND groupings in a given AO or AOI gate. It was, therefore, thought some 
provision could be made to expand the number of inputs to the OR function. AO 
gates with expansion facility and the expander gates include  

Expandable Dual 2-input 2-wide AOI 7450  

 Expandable 2-wide 4-input AOI        74LS55 

 Triple 3-input Expander       7461 

 Dual 4-input Expander       7460 

Consider AOI implementation of the logical expression for STRT, as in the figure 3.  
We notice that AOI realization does not necessarily reduce the chip count. 

We considered earlier that a NAND gate can be used to realize either an AND 
function or an OR function according to the assertion levels of the input signals.  
Therefore, any logical expression in SOP form can be realized by two levels of NAND 
gates.  

 The first level NAND gates perform the AND operation and produce Asserted 
Low outputs.   

 The second level NAND gate performs OR operation on Asserted Low inputs to 
generate an Asserted High output.   



The realization of the expression for START, in the polarized mnemonic notation, is 
shown in the figure 4.  
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 FIG. 4: NAND realization of a logical expression in SOP form 

If variables are available both in Asserted High and Asserted Low versions, any 
logical expression can be realized in its SOP form through two level NAND gates.  If 
variables are not available in both the versions then an additional level of gating, 
with NANDS used as INVERTERS, would become necessary. Such a realization of the 
expression for START is shown in the figure 5.  
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FIG. 5: NAND and INVERTER realization of a logical expression in SOP form with 
variables in AH form 

The major advantage of realizing logical expressions through NAND gates is that the 
inventory in an organization can be kept to a single variety of gates. 

If the expression is available in the POS form then it is better to realize it using NOR 
gates.  Consider the expression for STRT in the POS form as given below. 

 STRT = (PTRL+IGNI+NEUTR+KICK).(PTRL+IGNI+SLOP+NEUTR+LOCK) 

Realization using the commercially available NOR gates is shown in the figure 6.  
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FIG.3.6: NOR realization of a logical expression in POS form 

We observe that the number of gating levels had to be increased as NOR gates with 
larger number of inputs are not available. Besides, logical expressions are more 
commonly expressed in SOP form than in POS form.  Hence implementation of 
expressions through NOR gates is not particularly popular. 

Some logical expressions are more conveniently expressed in terms of EX-OR 
operations rather than in the standard form. For example the expression for parity 
checking is given by. 

EP = A ⊕ B ⊕ C ⊕ D ⊕E 

This is more conveniently realized in this form rather than realizing it in its canonical 
version.  The logical expression for the parity checking, in its canonical form is 

 EP = A B C D E + A B C' D' E + A B C'D E' + A B C D' E' + 

     A' B' C' D' E + A' B' C' D E' + A' B' C D' E' + A' B' C D E + 

     A B' C' D' E' + A B' C D E' + A B' C D' E + A B' C' D E + 

    A' B C' D' E' + A' B C D E' + A' B C D' E.+ A' B C' D E. 

 

Its implementation using 74LS86/HC86s (Quad 2-input EX-OR) is shown in the figure 
7.  Notice that while this realization appears simple, the number of levels of gating is 
considerably more. This would mean more delay to generate the output variable. 
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  FIG. 7: Realization with EX-OR gates 

At this stage of design, the choice of gates in realizing logical expressions should be 
based on the following factors: 

 Number of chips needed to realize the expression 

 Number of varieties of chips to be kept in the inventory 



 Number of levels of gating (the maximum number of gates that an input 
signal has to pass through in a circuit) 

Each expression may lead to the usage of a unique combination of gates in 
minimizing the chip count.  In such a case one has to keep all the available gates in 
the inventory.  However, if one wishes to minimize the inventory it is more 
convenient to limit the realization of logical expressions to NANDs and INVERTERs. 
This is particularly advantageous as the expressions are more commonly available in 
the SOP form.  The number of levels of gating depends on the number of variables, 
the form in which the variables are available and the fan-in of the available gates, 
which in turn determines the delay in generating the output.  

 



DELAY 

Any hardware logic unit will have some propagation delay associated with it.  The 
output appears with a time delay after the application of inputs. The time 
relationship between the input and output of an INVERTER is shown in the figure 1. 
Two different time delays are identified in the figure,  

 tPHL represents the propagation delay when the output makes a transition 
from high voltage to low voltage,  

 tPLH indicates the propagation delay associated when the output makes a 
transition from low voltage to high voltage.   

These two propagation delays are not necessarily the same. When they are not the 
same they should be considered independently, and no averaging should be done. 

The IC manufacturers mention typical and maximum values in their specification 
sheets.  For example the propagation delays of 74LS04 are: 

          TYP   MAX 

        tPHL  -     9.5       15     ns 

        tPLH  -     9.5       15     ns 
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FIG.1: Input-output timing relationship in an INVERTER 

The typical values of these propagation delays are used by the manufacturers to 
indicate the speed of the circuits. Possibly most of the ICs in a given lot will actually 
have delays equal to or even less than these typical values. But the typical value is 
not a guaranteed value and hence cannot be used as a design parameter.  You have 
to always work with the worst case values for these propagation delays, which 
happen to be the maximum values in this case.  

It should also be noted that the manufacturers of LSTTL family ICs do not guarantee 
any minimum delay.  This can create problems in certain types of circuits. Consider 
the digital differentiator shown in the figure 2.  
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FIG.2: Digital differentiator 

The timing diagram shows that the output is a pulse of width T.  What will be the 
width of the output pulse?  

 If we take typical values for the associated gates it would be 9.5 x 3 = 28.5 
ns.  

 If we consider maximum values the width would be 15 x 3 = 45 ns.  

 While we may agree it would be some nonzero value we cannot guarantee 
any minimum value to this pulse. It can be any value from almost 0 to 45 ns.  

If we want to generate a pulse with a guaranteed width of 30 ns, this circuit cannot 
be used. Therefore, you will have to be careful in applications similar to this in 
assuring the performance of the circuit. 

Propagation delay is an important parameter in a digital circuit, as it is indicative of 
the speed with which the given task would be done.  One of the aims of digital 
systems is to do more and more in less and less time. Therefore, in applications 
where speed is an important criterion, you will have to keep a close watch on the 
propagation delays and make attempts to reduce them as much as possible.   

When a logical expression is given in a SOP either in canonical or non-canonical form 
and the variables are available in their Asserted High and Asserted Low versions, it 
can be realised by two level NAND gating, if the number of inputs do not exceed 13 
(74S134).  

If the variables are available only in one form then the expression in its canonical 
form can be realized through three levels of gates.   

If the expression is to be realised in any other form the delay is likely to be more. 
Consider the expression for STRT as given below: 

 STRT = PTRL. IGNI. ([NEUTR.KICK] + [SLOPE.NEUTR/.KICK/]) 

Obviously, this expression is not in its canonical form. Its realisation is shown in the 
figure 3.  The propagation delay of this realisation is equal to that of five stages. 
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FIG. 3: Realisation of the logic expression for START in its non-canonical form 

You should note that the minimization of propagation delay may not always the 
design objective. In such cases you may use other forms of the logical expression if 
they do not increase the chip count. The form of the expression may be chosen to 
make the design more easily understandable. 

Let us consider some hardware aspects of propagation delay. The value given for tPHL 
and tPLH are not the guaranteed maximums under all operating conditions.  Normally 
the delays for LSTTL family are defined at the following operating conditions: 

 T = 25o C, V = 5 volts, C = 15 pF, and R = 2 K Ω 

For HCMOS family the delay times are defined at many operating conditions, as 
these devices can be operated at voltage levels below 6 volts. The dc and ac 
characteristics including the time delays are specified at nine operating points (three 
voltages and three temperatures) 
 

1. ∆VCC = 2.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF, Input tr = 
tf = 6 ns 

2. ∆VCC = 4.5 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF, Input tr = 
tf = 6 ns 

3. ∆VCC =6.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF,  Input tr = 
tf = 6 ns 

 
As HCTMOS family is compatible with LSTTL family the AC electrical characteristics 
are defined only at one voltage, namely, at VCC = 5 V in the following manner. 

 VCC = 5.0 V, T: 25o C to -55o C, < 85o C, and < 125oC, CL = 50 pF,   
 Input tr = tf = 6 ns. 

The test circuit with which these delays are measured is given in the figure 4. The 
propagation delays change with temperature, load capacitance and type of load 
circuit. The circuit shown in the figure 4 simulates the input of a LSTTL and HCMOS 
gates. 
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FIG. 4: Test circuits for LSTTL ICs with totem-pole outputs and for HCMOS ICs 

Other types of load circuits, we are likely to encounter, are shown in the figure 5. 
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FIG. 5: Load circuits encountered in digital systems 

The load capacitance will, in turn, depend on the PCB track width and the length, and 
on the material of the laminate.  The capacitance encountered in actual practice can 
vary from 20 pF to 150 pF. The effect of this capacitance is to increase the 
propagation delay and supply current spike amplitude during the transients.  
Depending on the load circuit, capacitive loading and temperature the propagation 
delays can increase by as much as 15 ns. The nature of dependence of the 
propagation delay on the load capacitance is shown in the figure 6. 
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FIG. 6: Dependence of turn-on delay on the load capacitance 

The designer is required to pay special attention to the PCB layout to minimize the 
capacitive loading, the designer is advised to consult the performance curves 
published by the manufacturer when the circuits are to be designed at high/low 
temperatures and/or under high capacitive load conditions. 

 



HAZARDS 

The analysis and minimisation methods presented so far predict the behaviour of 

combinational circuits under steady state. This means that the output of the circuit is 

considered only after all the transients that are likely to be produced when the state 

of the inputs signals change. However, the finite delays associated with gates makes 

the transient response of a logic circuit different from steady state behaviour. These 

transients occur because different paths that exist from input to output may have 

different propagation delays. Because of these differences in the propagation delays 

combinational circuits, as we will demonstrate, can produce short pulses, known as 

glitches, under certain conditions, though the steady state analysis does not predict 

this behaviour. A hazard is said to exist when a circuit has the possibility of 

generating a glitch. However, the actual occurrence of the glitch and its pulse width 

depend on the exact delays associated with the actual devices used in the circuit. 

Since the designer has no control over this parameter it is necessary for him to 

design the circuit in a manner that avoids the occurrence of glitches. While a given 

circuit can be analysed for the presence of glitches, it is necessary to design the 

system in a manner that hazard analysis of the circuit would not be necessary. One 

simple method is not to look at the outputs until they settle down to their final value. 

Consider the realization of logical expression X = A B' + BC'D' as shown in the figure 

3.14. In this circuit the hazard is caused by the propagation delay associated with 

the gate-1. Let A and B be Asserted and C and D are Not-asserrted. When B changes 

from its Asserted state to its Not-asserted state with the other variables remaining 

the same the output should remain in its Asserted state. However, when B changes 

from 1-to-0 the output of the gate-5 changes from 1-to-0. The output of the gate-4 

should change from 0-to-1 at the same time.  But the delay associated with the 

gate- 1 makes this transition of the gate-4 output to happen a little later than that of 

gate-5.  This can cause brief transition of X from 1-to-0 and then from 0-to-1, as 

shown in the figure 1. 
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FIG. 1: Relaisation of the expression X = AB/ + BC/D/ 



A hazard of this nature is known as static-1 hazard, because the circuit is likely 

produce a 0-glitch when the output is expected to remain in state 1 as per the 

steady state analysis. Similarly, if the circuit is likely to produce a 1-glitch when the 

output is expected to remain in state 0 as per the steady state analysis it is known 

as static-0 hazard. When the output is supposed to change from 0 to 1 (or 1 to 0), 

the circuit may go through three or more transients to produce more than one glitch. 

Such multiple glitch situations are known as dynamic hazards. The static and 

dynamic hazards are illustrated in the figure 2. Obviously these hazards are 

undesirable when these outputs happen to be critical in a given digital system.  

    

 

FIG. 2: Different types of static and dynamic hazards 

The K-Map of the expression given above is shown in the figure 3. 

  

1 1 1

1

1

1

A

B

C

D

1 1 1

1

1

1

A

B

C

D

AC' 
BC'D'

AB'

 

FIG. 3: K-maps of the logic expression X = AB' + BC'D' 

It is clear from the K-Map that the hazard associated with the 1-to-1 transition 

occurred when the change of state of the variable B caused the transition from one 

grouping BC'D' to another grouping AB'. This jump made it necessary for the signal B 

to go through another path of longer delay to keep the output at the same state. 

While the K-Map makes it easy to identify the hazard associated with 1-to-1 

transition it is much more difficult to detect the other three transitions.  Fortunately 

one result from Logic and Switching Theory comes to our rescue. The theorem for 

the hazard free design states that a two level gate implementation of a logical 

expression will be hazard free for all transitions of the output if it is free from the 

hazard associated with 1-to-1 transition.  This theorem makes it very easy to detect 

and correct for the hazards in a combinational circuit, since the 1-to-1 transition can 

easily be detected through K-Map. When the input variables change in such manner 



as to cause a transition from one grouping to another grouping, the 1-to-1  transition 

can occur. Therefore, the procedure to eliminate hazards in two level gating 

realization of a logical expression is to include all 1s which are unit distance apart at 

least in one grouping.  In the example considered above the hazard occurred 

because when B changed its state, it caused a transition from BC'D' grouping to A B' 

grouping.  Therefore the solution to remove hazard is to group the  terms ABC'D' and 

AB'C'D' together. This would lead to an additional gate. This procedure is illustrated 

in the figure 4.  The added gate defines the output during the transition of B from 

one state to the other. This procedure can be applied to all two level gate situations 

to eliminate hazards. 
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FIG.4: Hazard free realisation of the expression 

X = AB' + BC'D' as X = AB' + BC'D' + AC'D' 

 



LOADING 

A logic gate has limited capacity to source and sink current at its output. As the 

output of a gate is likely to be connected to more than one similar gate, the designer 

has to ensure that the driving unit has the necessary current capability.  The loading 

in the case of digital circuits, built with TTL integrated circuits, is defined in terms of 

Unit Loads (UL). One UL is defined as that of the input of Std.TTL gate. This is given 

by, 

IIL : Input LOW Current (The current flowing out of an input when a 

      specified LOW level voltage is applied to that input) 

       = -1.6 mA (with VCC at Maximum and VI = 0.4 volts) 

    IIH : Input HIGH Current (The current flowing into an input when a specified 

                HIGH level voltage is applied to that input) 

               = 40µA (with VCC at Maximum and VI = 2.4 volts) 

A Std. TTL gate has a fanout of 10 ULs. This is equivalent to, 

IOL : Output LOW Current (The current flowing into an output which is in the 

       LOW state) 

               = 16 mA (with VCC and VIH at Minimum and VOL = 0.4 volts) 

    IOH - Output HIGH Current (The current flowing out of an output which is in 

                 HIGH state) 

         = - 400 µA(with VCC at Minimum, VIL at Maximum and VOH = 2.4  volts) 

The output current capability of LSTTL gate is 

 IOH = - 400 µA    at VOH  = 2.7 volts 

 IOL =    4 mA   at VOL = 0.4 volts 

      =    8 mA    at VOL = 0.5 volts 

If the LOW state output VOL is to be maintained at 0.4 volts LSTTL gates have 2.5 UL 

capability, and if VOL can be tolerated at 0.5 volts it can support 5 ULs. However, it is 

unlikely that we need to drive Std.TTL gates. The LSTTL gate has the input 

characteristics as given below: 

 IIH = 20  µA   at VI = 2.7 volts  

 IIL = -0.4 mA    at VI = 2.7 volts  



Therefore, an LSTTL gate can drive 10 LSTTL gates with VOL of 0.4 volts and 20 

LSTTL gates with a VOL of 0.5 volts. The loading on an LSTTL gate, that is, the 

number of other LSTTL gates that can be connected to it, should be kept within these 

limits. If these limits  are exceeded,  initially the logic voltage levels deteriorate from 

the specified values, and subsequently the gate would be damaged due to the 

excessive power consumption. 

The input and output current specifications of a HCMOS gate are given by; 

 Iin = + 0.1 µA at VCC = 6.0 V at T: 25o C to -55oC,  

     = + 1.0 µA at VCC = 6.0 V at T: < 85o C     

    = + 1.0 µA at VCC = 6.0 V at T: < 125o C 

 IOH = - 4.0 mA at VOH = 3.98 V with VCC = 4.5 V and T: -55o to 25o C            

                      at VOH = 3.84 V with VCC = 4.5 V and T: < 85oC  

                               at VOH = 3.70 V with VCC = 4.5 V and T: < 125oC  

    = - 5.2 mA  at VOH = 5.48 V with VCC = 6.0 V and T: -55o to 25o C    

   at VOH = 5.34 V with VCC = 6.0 V and T: <  85oC 

      at VOH = 5.20 V with VCC = 6.0 V and T: < 125o C  

    IOL = 4.0 mA at VOL = 0.26 V with VCC = 4.5 V and T: 25o to -55o C,     

              at VOL = 0.33 V with VCC = 4.5 V and T: < 85oC  

               at VOL = 0.40 V with VCC = 4.5 V and T: < 125oC 

        = 5.2 mA at VOL = 0.26 V with VCC = 6.0 V and T: 25o to -55o C  

        at VOL = 0.33 V with VCC = 6.0 V and T: < 85oC  

                          at VOL = 0.40 V with VCC = 6.0 V and T: < 125oC 

As it can be seen the designer has to consider a wide range of operating conditions 

to take loading effects into consideration when working with HCMOS family circuits.  

For the HCTMOS family ICs the currents specified at VCC = 4.5 V need only to be 

considered. 

There may arise certain occasions, like a clock source driving many units and setting 

up LOW(L) and HIGH (H) voltage levels to be connected to unused inputs, wherein it 

may become necessary to provide more drive capability than the standard values. In 

such cases buffers have to be used. The available buffers in LSTTL family are; 



  Quad 2 - input NAND Buffer - 74LS37  

  Dual  4 - input NAND Buffer - 74LS40 

These have an output current capability of 

   IOL =   24 mA 

    IOH = - 1200µA 

They have the capacity to drive as many as 60 LSTTL loads. There is a small price to 

be paid in terms of increased propagation delay (tPHL = tPLH = 24 n secs against the 

usual 15 n secs) for this enhanced drive capability. This increased time delay should 

not normally make any difference as these buffers are unlikely to be used for 

implementing logic expressions. There are no similar buffers available in the HCMOS 

and HCTMOS families. When we are required to drive a load even beyond the 

capability of a buffer, discrete components have to be used.   

 



LARGER OUTPUT VOLTAGE SWING 

The worst case output voltage level of a gate when it is in HIGH state can be as low 

as 2.7 volts in the case of LSTTL family and only 2.4 volts in the case of Std. TTL 

family.  In the case of HCMOS family the output voltage levels can go up to 5.5V if 

6.0V power supply is used. If it is desired to have a higher output voltage swing one 

simple way is to connect a 1 KΩ or a 2 KΩ resistor from VCC to the output terminal.  

However, it should be remembered that this modification of the output circuit would 

increase the propagation delay. Larger output voltage swings can be obtained with 

the help of open-collector gates.  In the open-collector (OC) gates the active pull-up 

circuit of the output totem-pole configuration in the LSTTL circuit is deleted as shown 

in the figure 1.    
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FIG. 1: 2-input LSTTL NAND gate with open collector output 

The designer can now have the choice of returning the open collector terminal to the 

desired supply voltage, as long as its value is less than or equal to the VOH(max) 

specified, through a suitable load resistor. 

The available open collector LSTTL gates are: 

Quad 2-input NAND(OC) gate - 74LS03 [VOH (max) = 5.5  V, IOL = 8 mA]  

Quad 2-input NAND(OC) gate - 74LS26 [VOH (max) = 15  V, IOL = 18 mA]  

Hex Inverter (OC)                 - 74LS38 [VOH (max) = 5.5  V, IOL = 24 mA]  

Hex Inverter/Buffer (OC)       - 7406  [VOH (max) = 30  V, IOL = 40 mA] 

Hex Buffer (OC)             - 7407   [VOH (max)= 30  V, IOL = 40 mA] 

The manner in which the load resistor is to be connected is shown in the figure 2. As 

the pull-up is through a passive resistor the propagation delay will be higher than 

that of the gate with the totem-pole output.  For example 74LS26 operated at VCC of 



5 V, RL = 2 KΩ and CL = 15 pF has tPLH = 32 ns (max) and a tPHL = 28 ns (max) 

against tPHL = tPLH = 15 ns (max) in the case of 74LS00 under the same operating 

conditions.  Open collector gates are useful for interfacing ICs from different logic 

families, and ICs with discrete circuits operating with different supply voltages. 
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  FIG. 2: Connecting a load resistor to an OC gate 

The HCMOS and HCTMOS families do not offer many open drain circuits. Whenever 

larger voltage swings are needed it is possible to use CD4000 series circuits.  The 

only open drain gate that is available in the HCMOS family is 74HC03, which is quad 

2-input NAND gate. The major application of open-collector gates is in implementing 

wired-logic operation needed in bussing signal lines. 

 



WIRED-LOGIC OPERATIONS 

If the outputs of the gates can be tied together as shown in the figure 1 it would be 

possible to realise AND operation without the actual use of hardware.  
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  FIG.1: Wired AND operation 

Such connections are referred to as wired-AND and implied-AND. This is because the 

voltage at the interconnecting point is High only if the outputs of both the gates are 

High at the same time. Such wired-logic connections are very useful in bussing 

signals in large digital systems wherein the hardware has to be implemented on a 

number of printed circuit boards. Consider the situation shown in the figure 2. 
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FIG.2: Common signal line in Bus organised digital system 

Board A has to take some action after verifying the change of state in all the other 

boards. Though this operation can be performed through using combinational 

circuits, it is more conveniently performed through wired-AND interconnection of the 

outputs from all the boards and connecting this wired-AND signal to be input line of 

board-A. This would substantially reduce the amount of hardware to be used. 

Let us explore the possibility of implementing such wired-logic connections with 

LSTTL combinational ICs.  The actual circuit that would result when we connect the 

outputs of two LSTTL gates with totem-pole output configurations is shown in the 

figure 3. It can be seen from the circuit diagram that if one of the outputs is in Low 

state while the other one is in High state there will occur a low impedance path 

between the supply and ground leading to a large value of current. This can lead to 

the destruction of the components in the output circuits of the ICs. Therefore, it is 

not possible to short the outputs of two or more LSTTL gates to realize wired-logic 

operations. However, wired logic operations can be implemented with the help of 

open-collector gates. 
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FIG.3: Outputs of two LSTTL gates tied together 

When the outputs of the open collector gates are tied together it becomes necessary 

to connect a load resistance R from the output point to the supply.  The value of this 

load resistance should be carefully chosen to maintain the logic state within the TTL 

limits under worst operating conditions. The most general interconnection situation 

that can occur is shown in the figure 4. 
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FIG.4: Connection of OC gates in parallel with all the outputs in the High state 

It may be noted that when two OC gates are interconnected to perform wired-AND 

operation they are capable of driving one to nine Unit Loads, and when an OC gate is 

not paralleled with other gates then it can drive up to ten Unit Loads.  The maximum 

value of the load resistance R must be selected to ensure that sufficient load current 

(to drive the output gates) output is High.  Using the worst case values for the High 

and Low states for designing the load resistor RL, will give a guaranteed dc noise 

margin of 700 mV in the logic High state.  Since 2.7 V should be present no more 

than 2.3V can be dropped acrossRL. The current through R is composite of current 

into the loads, m .IIH, and leakage current into output transistors which are biased 

into off state, n.IOH . Both IOH and IIHare data sheet specifications; they are 250 µA 



and 20 µA respectively in the case of 74LS38. The maximum value of the load 

resistor is calculated from the relationship given below: 

 RL(max) = 

VCC − VOH(required)

n.IOH + m.IIH  

with n = 4, m = 3 and VCC = 5 V and VOH (required) = 2.7 V the maximum value of 

RLis 2170 ohms. A greater value will result in the deterioration of the High state 

voltage value.  The minimum value of RL is found by considering Low state at the 

output of the paralleled gates as shown in the figure 5. RL is permitted to drop a 

maximum voltage dictated by the noise margin in the Low state, which is 400 mV. In 

the circuit shown in the figure 5, wherein the worst case situation is indicated, the 

output of one gate is in Low state while the outputs of the remaining gates are in 

High state.  The resistor must be able to maintain the Low level while sinking the 

load current from all the gates connected as load. 

The minimum value of the load resistor RL may now be calculated from the 

relationship given as below: 

                 

  RL(min)=

VCC − VOL(required)

IOL(capability) − Isink(load)  
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 FIG. 5: OC gates connected for wired-AND operation with their 
    outputs in Low state 

With IOL = 24 mA and IIL = 0.4 mA the minimum value of RL is 201 ohms. The value 

of the load resistor may be chosen between RL(max) and RL (min).  It is essential to 

note that the output impedance of the OC gates will be significantly higher in the 

High state due to the pull-up resistor in comparison to that of the gate with the 

totem-pole output.  This also results in a slightly higher propagation delay. 
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TRISTATE GATES 
Wired-logic operations are important in the design of bus-structured digital systems.  The 

open-collector gates can meet the requirements of bussing, but have limitations with regard to 

the speed and the distance between the modules, and every signal line requires the usage of a 

suitable load resistor.  These factors limit the operation of OC based bus structured systems to 

about 2 MHz operation over a distance of a few meters.  Tristate logic elements provide a 

solution to the problems of speed and power in bus organized digital systems. Tristate gates 

are essentially gates with output stages that assume three states. Two of these three are 

normal low impedance High and Low states.  The third one is a high-impedance (Hi-z) state. 

When the device is in Hi-z state both the transistors in the output totem-pole circuit are in off 

conditions. When the output of such a gate in Hi-z state is tied to the output of a gate that is 

in Lo-z state, the High-z state gate does not influence (in any significant manner) the output 

circuit of a Lo-z state gate. This enables us to tie the outputs of many tristate devices, and 

share a common (bus) signal line. These units have the speed of the regular devices, higher 

line-drive capability and higher noise immunity. By eliminating the pull-up resistors these 

tristate gates cut bus delays to a few nanoseconds. The available TSL buffers are listed in the 

following: 

 LSTTL HCMOS HCTMOS 

Quad 3-state noninverting buffer 74LS125A 74HC125A  

Quad 3-state noninverting buffer 74LS126A 74HC125A  

Octal 3-state inverting buffer/ line driver/line 
receiver 

74LS240 74HC240A 74HCT240A 

Octal 3-state Noninverting buffer/ line driver/line 
receiver 

74LS241 74HC241 74HCT241A 

Octal 3-state inverting bus transceiver 74LS242 74HC242  

Octal 3-state noninverting buffer/ line driver/line 
receiver 

74LS244 74HC244A 74HCT244A 

Octal 3-state noninverting bus transceiver 74LS245     74HC245A   74HCT245 

Hex 3-state noninverting buffer with common 
enables 

74LS365A 74HC365  

Hex 3-state inverting buffer with common enables 74LS366A 74HC366  

Hex 3-state noninverting buffer with 2-bit and 4-bit 
sections 

74LS367A 74HC367  

Hex 3-state inverting buffer with 2-bit and 4-bit 
sections 

74LS368A 74HC368  

Octal 3-state inverting buffer/ line driver/line 
receiver 

74LS540 74HC540 74HCT540 

Octal 3-state noninverting buffer/ line driver/line 
receiver 

74LS541 74HC541 74HCT541 

Octal 3-state inverting bus transceiver 74LS640 74HC640A 74HCT640 
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When the output of an LSTTL tristate gate is in Hi-z state the maximum leakage current at the 

output, which occurs when it is tied to a gate whose output is low-impedance High state,  is 

+20 µA (into the output terminal). When the device is placed in its low impedance state it has 

all the desirable properties of the usual LSTTL gate.  Another important factor in driving a bus 

line is the current capability in sinking and sourcing. For this reason the output stage of a 

tristate gate is designed to source 2.6 mA at a VOH of 2.7 V, and sink 24 mA at VOL of 0.5 V 

and 12 mA at a VOL of 0.4 V. This is 6.5 times more sourcing capability than a LSTTL gate.  

This will permit as many as 128 tristate logic (TSL) outputs to be tied to a common bus and 

still provide enough sourcing current to drive three LSTTL loads.  If one device is ON and 127 

are OFF the following is valid: 

      127 x 20µA      = 2.54 mA 
    2.6 mA - 2.54 mA = 60µA  
                = 3 x 20 µA (LSTTL) 

The device that is ON, therefore, is capable of maintaining LSTTL speeds while driving the bus. 

Another advantage of the high current sourcing feature is that the LSTTL gate with 400 µA 

maximum sourcing capability can only drive about 25 to 35 cms of line before the noise 

problems become prohibitive.  The TSL output will be able to drive reliably a line over 3 meters 

long.  The greater sourcing capability also provides a far superior High level noise immunity 

that is better than the usual LSTTL devices.  TSL gates are designed in such a way that the 

delay from Inhibit to Output Disable, 20 ns(max), is less than the delay from Enable to Low 

State, 25 ns(max). Therefore, the device that is disabled off the line is removed before the 

device that is being enabled into Low state is brought on to the bus.  This prevents the 

occurrence of heavy currents during the transients from Hi-Z state to Low-Z state and vice-

versa.  In addition the output state is designed to take care of shorted conditions between two 

TSL gates.  Even if two devices are simultaneously switched on, the pull down transistors are 

designed to withstand as much as 40 mA.  But long before it reaches that limit the transistors 

begin to come  out of saturation.   

At present many of the combinational and sequential MSI circuits are available commercially 

with tristate outputs.  This option makes the usage of these ICs very convenient. 
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Multiplexers

� A multiplexer is a combinational circuit that gates one out 
of its several inputs to a single output. 

� It is also called a �data selector�. 
� The input selected for connection to the output is 

controlled by a set of SELECT inputs.
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4-Input Multiplexer
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Functioning of the Multiplexer

� S0 and S1 are select inputs. 
� Together S0 and S1 determine the input, among the 

Data Inputs, DI0, DI1, DI2, and DI3, that gets connected 
to the output Y.

The output of the multiplexer is given by: 
Y = DI0.S1/.S0/ + DI1.S1/.S0 + DI2. S1.S0/ + 

DI3.S1.S0
� The relationship between the SELECT inputs and the 

DATA inputs is G dependency.
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Parameters of concern

The main parameters of concern to us are:
� Number of inputs 
� Nature of outputs 
� Propagation delay 
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Available LSTTL multiplexers

LSTTL      FAST    HCMOS   HCTMOS 

54/74LS   54/74F  54/74HC 54/74HCT
Quad 2-input multiplexers   
2-state noninverting outputs  157         157A      157   157A 
2-state inverting outputs        158         158A
3-state noninverting outputs  257B       257A      257
3-state noninverting outputs  258B       258A
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Available LSTTL multiplexers

LSTTL      FAST    HCMOS   HCTMOS 
54/74LS   54/74F  54/74HC   54/74HCT

Dual 4-input Multiplexer
2-state noninverting outputs    153 153       153
2-state inverting outputs 352    352
3-state noninverting outputs    253     253 253
3-state inverting outputs          353     353
8-input Multiplexer          
2-state noninverting outputs    151    151     151
3-state noninverting outputs     251     251 251
16-input Multiplexer 
2-state noninverting outputs     150
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Multiplexer ICs can be used for

� selection of data from multiple sources 
� realising logic expressions
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Data Selection

Selecting 8-bit data 
from four sources
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Multiplexers for Logic Realization

Consider the function Y
Y = A/B/C/ + A/BC + AB/C + ABC/

Y = m0 (IP0) + m1 (IP1) + - - - - m2n (IP2n)
Y = m0 + m3 + m5 + m6
Y = m0(IP0=1) + m1(IP1=0) + m2(IP2=0) + 

m3(IP3=1) + m4(IP4=0) + m5(IP5=1) + 
m6(IP6=1) + m7(IP7=0).
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Realization of Y
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Example

Y =  (1, 2, 4, 7, 8, 9, 13)

X401111011

X400111001

X4 /11010001

X411011110

X4 /01010010

X4 /10010100

X400011000

YX3X2X1YX4X3X2X1

Y = X4 (0, 3, 4, 6) + X4 / (1, 2, 4)

= X4 (0, 3, 6) + X4 / (1, 2) + (1) 4
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Example
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Some variables are Asserted Low
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MULTIPLEXERS 

A multiplexer is a combinational circuit that gates one out of its several inputs to a 

single output. As it selects one out of many inputs, it is also called a “data selector”. 

The input selected for connection to the output is controlled by a set of SELECT 

inputs. A typical 4-input multiplexer is illustrated in the figure 1. 

MUX
0
1

0
1
2
3

S0
S1

DI0
DI1
DI2

DI3

G
0_
3

Y

SELECT
INPUTS

DATA
INPUTS

 
FIG. 1: Schematic of a 4-input multiplexer 

S0 and S1 are select inputs. Together S0 and S1 determine the input, among the 

Data Inputs, DI0, DI1, DI2, and DI3, that gets connected to the output Y. 

The output of the multiplexer is given by:  

       Y = DI0.S1/.S0/ + DI1.S1/.S0 + DI2. S1.S0/ + DI3.S1.S0 

Notice that the relationship between the SELECT inputs and the DATA inputs is G 

dependency. 

The main parameters of concern to us are: 

 Number of inputs  

 Nature of outputs  

 Propagation delay  

The choice on the number of inputs enables us to select the appropriate multiplexer, 

to minimize the number of ICs needed to implement a given logic function.  

For example, if data is to be selected from two 16-bit sources, it is more convenient 

to use 2-input multiplexers, than 4-input or 8-input multiplexers. 

Some additional features: 

 Higher drive capability of a multiplexer enables the designer to save on 

buffers and the consequent delay in certain situations.  



 Availability of complementary outputs often results in the saving of additional 

inverters.  

 Availability of tristate outputs make it easy to tie the outputs of a number of 

multiplexers without using additional gates. 

There are two propagation delays that are of interest to designers: 

   - Delay from the data inputs to the output 

   - Delay from the select input to the output 

These timing relationships are shown in figure 2. 

t PLH

t

PLHt

tPHL

PHLtoutput

select

data

 

FIG. 2: Timing relationship between signals of a multiplexer 

Some of the commonly available multiplexers as MSIs in the LSTTL family are:                   

      LSTTL  FAST     HCMOS  HCTMOS  
     54/74LS    54/74F   54/74HC  54/74HCT 
Quad 2-input multiplexers    

    2-state noninverting outputs      157      157A   157    157A  

    2-state inverting outputs        158    158A 

    3-state noninverting outputs      257B   257A    257 

    3-state noninverting outputs      258B   258A 

 Dual 4-input Multiplexer 

     2-state noninverting outputs       153  153       153 

     2-state inverting outputs      352     352 

     3-state noninverting outputs         253      253     253 

     3-state inverting outputs          353      353  

8-input Multiplexer           

    2-state noninverting outputs       151     151      151 

    3-state noninverting outputs        251      251      251 

16-input Multiplexer     

    2-state noninverting outputs       150 

As can be seen from the ICs listed above, there are available, a variety of 

combinations of parameters in the case of 2-input multiplexers, while in the other 



cases, the main choice is between the normal output and 3-state outputs. 

Multiplexer ICs can be used for  

 selection of data from multiple sources  

 realising logic expressions 

These two aspects are explored in this Unit 

Data Selection 

The multiplexer was mainly designed for selecting data from several sources. For 

example, if we are required to select an 8-bit data from one of four possible sources, 

then, it can be realised through four dual 4-input multiplexers, like 74LS153. The 

circuit that realises such a data selection is shown in figure 3  
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FIG.3: Circuit for selecting 8-bit data from four sources 

Another conventional use of the multiplexers is one of time-division gating of several 

data lines on to a transmission channel using SELECT lines.  This is done by using a 

`Multiplexer' as the sending unit, and a `Demultiplexer' as a receiving unit.  The 

sending end of such a transmission system which multiplexes 32 data lines is shown 

in Figure 4. 

 
 
 
 
 
 
 
 
 
 
 
 



   

 
FIG. 4: 1-of-32 data selector 

 

Multiplexers for Logic Realization 

The multiplexer also finds application in realising logical functions, sometimes in a 

more effective manner than with the gates. Consider the following example. 

Example 1: Consider the function Y 

 Y = A/B/C/ + A/BC + AB/C + ABC/ 

The general expression that gives the input-output relationship of a multiplexer is 

     Y = m0 (IP0) + m1 (IP1) + - - - - m2
n (IP2n) 

This expression for Y can be written in terms of MINTERMS as: 

     Y = m0 + m3 + m5 + m6 
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This expression can in turn be rewritten as: 

     Y = m0(IP0=1) + m1(IP1=0) + m2(IP2=0) + m3(IP3=1) + m4(IP4=0) +  

  m5(IP5=1) + m6(IP6=1) + m7(IP7=0). 

Connect the logic variables A, B, and C to the Select Inputs and binary inputs to the 

Data lines of an 8-input multiplexer as indicated in the figure 5. This is a very 

general method and it allows any expression of n-logic variables to be realized by a 

2n -input multiplexer. 
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FIG. 5: Realisation of the function given in example 1 

Example 2: Implement the logic expression given below, using 74LS251 (8-input 

multiplexer)  

     Y =  Σ (1, 2, 4, 7, 8, 9, 13). 

X1 X2 X3 X4 Y  X1 X2 X3 Y 
0 0 0 1 1  0 0 0 X4 
0 0 1 0 1  0 0 1 X4 / 
0 1 0 0 1  0 1 0 X4 / 
0 1 1 1 1  0 1 1 X4 
1 0 0 0 1  0 1 1 X4 / 
1 0 0 1 1  1 0 0 X4 
1 1 0 1 1  1 1 0 X4 

 

Let X1, X2, X3 and X4 be the four variables of which X1 is the most significant and 

X4 is the least significant variable. All variables are considered Asserted High. 

Consider the truth table given in the following. A 4-input function can be reduced to 

a 3-input function by expressing the output Y in terms of X4.  

 Y = X4 (0, 3, 4, 6) + X4 / (1, 2, 4) 

    = X4 (0, 3, 6) + X4 / (1, 2) + (1) 4 



The realisation of the above expression with a 3-input (8- data input) multiplexer is 
shown in the figure 6. 
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FIG. 6: Realisation of the logical expression in the example 2 

What happens when some of the variables are Asserted Low while others are 

Asserted High?  Multiplexers can still be used advantageously to realise expressions 

using variables with mixed assertion levels. One simple method is to change the 

assertion levels of all the signals to High level by using inverters. Let X1 and X2 

variables in the logic expression given in the example 2 be Asserted Low, while the 

variables X3 and X4 be Asserted High. Implementation of this expression using the 

inverters along with the multiplexer is shown in Figure 7. 

 
 
 
 
 
 
 
  
 
 

 
FIG. 7: Realisation of the expression in Example 2 when some of the variables are 

Asserted Low 
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Demultiplexers

� It is a combinational circuit that asserts one of several 
outputs in response to a unique input code. 

� It is a unit with n-inputs and m-outputs, where m < 2n. 
� An output switches from Not Asserted state to an 

Asserted state, when the input code is switched to a 
specific one. 

� When m = 2n, each one of the outputs can be associated 
with a Minterm of n-variables. 

� Hence, such a decoder is known as Minterm Recogniser
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3-input demultiplexer
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DMUX

Each one of the outputs have an AND (G) dependence on one of 
the input codes.
Enable input can be used to disable/enable the entire functional
unit.
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LSTTL/HCMOS Demultiplexers

Dual 1-of-4 demultiplexer
2-state AL outputs: 74LS139/ 

74HC139A
2-state AL outputs and common addressing: 74LS155 
AL OC outputs and common addressing: 74LS156 
3-state AH outputs: 74LS539 
1-of-8 demultiplexer
AL outputs and 3 Enable inputs: 74LS138/ 

74HC138A         
AL outputs, 2 Enable, Address latch with latch enable:    74LS137        
1-of-10 demultiplexer (2-state AL outputs): 74LS42        
1-of-16 demultiplexer (AL outputs and 2 Enable inputs):74LS154/ 

74HC154
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Uses of a demultiplexer

� Demultiplexing

� Realisation of logic functions
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Decoding 
An 8-channel multiplexer-demultiplexer combination
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1-to-32 demultiplexer
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Delays

74LS138: Propagation delays 
Address to output tPLH = 27 ns tPHL= 39 ns (max)
Enable to output tPLH = 26 ns tPHL= 38 ns (max)

74LS139: Propagation delays 
Address to output tPLH = 29ns tPHL= 38 ns (max)
Enable to output tPLH = 24 ns tPHL = 32 ns (max)

The worst case delay time from the most significant bits of 
the input address to output of is 76 ns 

The delay from the data input to output is 70 ns
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Realization of Logic functions

� Demultiplexer is essentially a Minterms generator
� Do the necessary ORing of the required Minterms to 

realize the logic expression.
� One demultiplexer which generates all the Minterms, and 

a number of OR gates can realize multiple logic 
expressions of the same set of variables
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Example 1

Y1 =  S (0, 2, 4, 5, 6, 11)
Y2 = S (0, 3, 4, 7, 8)
Y3/ = S (1, 3, 6, 14)
Y4 = S (8, 13, 15)
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Example 1 (2)

74LS154: Propagation delays 
Address to output tPLH = 36 ns tPHL = 33 ns (max)
Enable to output tPLH = 30 ns tPHL = 27 ns (max)

74LS20: Propagation delay tPLH = tPHL = 15 ns (max)
74LS30: Propagation delay tPLH= 15 ns,  tPHL = 20 ns (max)
Net Propagation delay = 36 + 20 = 56 n secs (max)  
� Realization by INVERTERS and NAND gates results in a 

propagation delay of 55 (15+20+20) ns 
� Demultiplexer solution to the realisation of logical 

expressions can reduce the net chip count
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Example 2

Y1  =  (0, 2, 5, 6)
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Example 2 (2)

If one of the variables X1 is Asserted Low

X1  X2  X3 /X1  X2   X3 Y
0    0    0    1     0    0     1
0    1    0 1     1    0 1
1    0    1        0     0    1          1
1    1    0  0     1    0 1
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Example 2 (3)
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Demultiplexer 

A decoder/demultiplexer is a combinational circuit that asserts one of several outputs 

in response to a unique input code. It is a unit with n-inputs and m-outputs, where 

m < 2n. An output switches from Not Asserted state to an Asserted state, when the 

input code is switched to a specific one. When m = 2n, each one of the outputs can 

be associated with a Minterm of n-variables. Hence, such a decoder is known as 

Minterm Recogniser. Schematic of a 3-input demultiplexer is shown in figure 1.  
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FIG. 1: Schematic of a 3-input demultiplexer 

In the demultiplexer illustrated, each one of the outputs have an AND (G) 

dependence on one of the input codes, while, Enable inputs can be used to 

disable/enable the entire functional unit. Some of the available decoders/ 

demultiplexers in the bipolar and CMOS families are listed below: 

Dual 1-of-4 demultiplexer  

2-state AL outputs:           74LS139/74HC139A 

2-state AL outputs and common addressing:       74LS155  

AL OC outputs and common addressing:        74LS156  

3-state AH outputs:           74LS539  

1-of-8 demultiplexer  

AL outputs and 3 Enable inputs:        74LS138/ 74HC138A          

AL outputs, 2 Enable, Address latch with latch enable:      74LS137         

1-of-10 demultiplexer (2-state AL outputs):       74LS42          

1-of-16 demultiplexer (AL outputs and 2 Enable inputs): 74LS154/74HC154 

The uses of a demultiplexer include traditional demultiplexing operations as well as 

realisation of logic functions. 

 



Decoding and Demultiplexing Functions 

One of the traditional uses of a demultiplexer is to use it in combination with a 

multiplexer to transmit a number of signals over a single line. An 8-channel 

multiplexer-demultiplexer combination is shown in the figure 2.  

 

 

 

 

 

 

 

 

 

 

 

FIG. 2: An 8-channel multiplexer-demultiplexer combination 

Notice that one of the Enable inputs of the demultiplexers is used as its data input. 

Though this illustration indicates that the address lines are tied together, in an actual 

signal transmission unit that uses such a MUX-DEMUX combination a different 

method will have to be used to change the addresses of both the units 

simultaneously. 

Demultiplexers/decoders are extensively used in interfacing display units in a digital 

system with the rest of the hardware, and in decoding the addresses of the memory 

systems. In some of the applications, it may become necessary to string a number of 

demultiplexers together. Figure 3 presents a 1-to-32 demultiplexer using four 

74LS138 units and one 74LS139. 
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FIG. 3: 1-to-32 demultiplexer 

The important characteristics the designer must compute and take into account are 

the delay times from the data and the address inputs to the output. The delay times 

associated with 74LS138 are: 

74LS138: Propagation delays  

 Address to output tPLH = 27 ns tPHL= 39 ns (max) 
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 Enable to output tPLH = 26 ns tPHL = 38 ns (max) 

74LS139: Propagation delays  

 Address to output tPLH = 29ns tPHL= 38 ns (max) 

 Enable to output tPLH = 24 ns tPHL = 32 ns (max) 

The worst case delay time from the most significant bits of the input address to 

output of 1-to-32 demultiplexer is 76 n secs. The delay from the data input to output 

is 70 n secs. 

Realization of Logic functions 

A logical expression in the Sum-of-Product form is nothing but ORing of a selected 

set of Minterms.  As a demultiplexer is essentially a Minterms generator, it is possible 

to use a demultiplexer to realise a logical expression along with a gate to do the 

necessary ORing of the required Minterms. In comparison to the multiplexer, a 

demultiplexer needs additional hardware to realise a logical expression. However, 

this can be turned into an advantage in situations where more than one expression 

of the same logic variables has to be implemented. One demultiplexer which 

generates all the Minterms, and a number (equal to the number of logical 

expressions) of OR gates, will suffice. The following example illustrates this use of 

demultiplexers. 

Example 1: Realise the following logical expressions using demultiplexers: 

     Y1 =  Σ (0, 2, 4, 5, 6, 11) 

     Y2 = Σ (0, 3, 4, 7, 8) 

     Y3/ = Σ (1, 3, 6, 14) 

     Y4 = Σ (8, 13, 15) 

As the expressions are in four variables, 74LS154 (1-to-16 demultiplexer) is used. 

The hardware realisation is shown in the figure4. Note that the OR function can 

actually be realised by a NAND gate, as the outputs of the demultiplexer are 

Asserted Low. 
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FIG. 4: Realisation of the functions given in Example 1 

The Propagation delay of this circuit can be computed as: 

74LS154: Propagation delays  

 Address to output tPLH = 36 ns tPHL= 33 ns (max) 

 Enable to output tPLH = 30 ns tPHL = 27 ns (max) 

74LS20: Propagation delay    

 tPLH = tPHL = 15 ns (max) 

74LS30: Propagation delay 

 tPLH = 15 ns,  t PHL = 20 ns (max) 

Net Propagation delay = 36 + 20 = 56 n secs (max) 

If these expressions are to be realised using INVERTERS and NAND gates, we require 

three-level gating (one level of INVERTERS and two levels of NANDs), which would 

result in a propagation delay of 55 (15+20+20) n secs. Hence, the demultiplexer 

solution does not give any speed advantage over the traditional realisation of logical 

expressions using gates, whereas, the multiplexer realisation gave a marginal speed 

advantage. However, demultiplexer solution to the realisation of logical expressions 

can greatly reduce the net chip count, at least in some cases. 

It is also possible to take into account if some of the variables in the logic expression 

are Asserted Low. The solution is very similar to the procedure adapted in the case of 

multiplexers, viz., either through changing assertion levels of the Asserted Low 



variables or by taking into account the fact that incompatibility at the input results in 

the complementation of the variables in the output logic expression. This is 

illustrated in the example 2 

Example 2: Realise the logical expression Y1  = Σ (0, 2, 5, 6) of three variables X1, 

X2 and X3 using 74LS138. Indicate how the realization of the expression would vary 

if the variable X1 is changed to an asserted-low variable 

Figure 5 shows the realization of logical expression for Y1 by a demultiplexer solution 

where.  

 

 

 

 

 

 

 

 

 

FIG. 5: Realisation of the function given in the Example 2 

The modified truth-table for this expression is as given in the following. The 

corresponding hardware realisation of the logic expression, where the assertion level 

of the variable X1 is not altered is given in the figure 6. 

  X1  X2  X3  /X1  X2   X3 Y 

  0    0    0      1     0    0      1 
  0    1    0  1     1    0 1 
  1    0    1         0     0    1 1 
  1    1    0    0     1    0 1 

   

 

 

 

 

 

 

 

FIG.6: Modified realisation of the function given in the example 2 
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Addition

� Addition is the most fundamental arithmetic operation. 
� All the other arithmetic operations can be expressed in 

terms of addition.  
� It is desirable for a digital designer to be familiar with the 

realisation of simple arithmetic functions using 
combinational circuits. 

� Many of these conventions and procedures are carried 
over to the software level while designing with LSIs. 
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Simple Adders

Adding two one-bit numbers

1011

0101

0110

0000

CSBA  S = A B/ + A/ B = A       B 
C = A . B 

A

B
S

C
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Addition of multi-bit numbers

� This requires an adder unit that performs addition with three bits. 
� Such an adder is called Full-Adder. 

11111

10011

10101

01001

10110

01010

01100

00000

CiSiCi-1BiAi
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Addition of multi-bit numbers (2)

Si = Ai
/ Bi

/ Ci-1 + Ai
/ Bi Ci-1

/ + Ai Bi
/ Ci-1

/ + Ai Bi Ci-1

Ci = Ai
/ Bi Ci-1 + Ai Bi

/ Ci-1 + Ai Bi Ci-1
/ + Ai Bi Ci-1

= Bi Ci-1 + Ai Ci-1 + Ai Bi

S

C o u t

i-1
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Addition of multi-bit numbers (3)

Full adder in terms of half-adders

B i

Ai

C i-1

A

B

S

C

A

B

S
Si

Ci
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4-bit adders



CO CI

 B

 A



CO CI

 B

 A



CO CI

 B

 A



CO CI

 B

 A

A1

B1

Cin

A2

B2

A3

B3

S1

S2

S3

S4

C4

A4

B4 FA

FA

FA

FA The carry bit will have to 
ripple through all the stages 
and the delay of the four bit 
adder will be four times the 
delay associated with single 
bit full adders.
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MSI adders
74LS283 (4-bit full adder) 
74LS181 (4-bit arithmetic logic unit)

P0
Q0

F0

P1
Q1

F1

P2
Q2

P3
Q3

F2

F3

0

4

M0
4

CP
CG
CO

P=Q
CI

ALU'181

CI CO

'283
0

3
0

3

0

3

P

Q



tPLH tPHL

CI to S  (max)       24      24 ns   
CI to CO (max)     17      22    ns 
A, B to  S (max)    24      24 ns     
A, B to CO (max)  17      17 ns
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16-bit adders

CI CO

'283
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3

0

3

0

3

P

Q



CI CO

'283
0

3

0

3

0

3
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'283
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3

0

3

0

3

P

Q



CI CO

'283
0

3

0

3

0

3

P

Q



S0

S1
S2
S3

S4

S5
S6
S7

S8
S9
S10
S11

S12

S13
S14
S15

C15C0

A0

A1
A2

A3
B0
b1
B2
B3

A4
A5
A6
A7
B4
B5
B6

B7

A9
A10

A11
B8
B9

B10

B11

A8 A12
A13

A14

A15
B12
B13
B14

B15

Addition time = tP(CI1 to CO1) + tP(CI2 + CO2) +  tP(CI3 to CO3) + 
tP(CI4 to S) 

= 22 + 22 + 22 + 24 
= 90 ns    

Addition time is 108 ns if 74LS181 is used
Addition time is 42 ns if 74S181 is used
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Limitations of 4-bit adders

� Internal circuitry of the 4-bit adders is optimised to 
provide minimum delay

� The carry bit has to ripple from one group of bits to the 
next group in the case of 16-bit, 32-bit and 64-bit adders

� This will increase the addition time significantly. 
� Add extra circuitry that can determine the final carry bit 

without waiting for it to ripple through all the stages. 
� Such an arrangement is called Carry Look Ahead 

feature. 
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Carry Look Ahead

Carry Generator, Gi = Ai Bi  

Carry Propagator, Pi = Ai + Bi   
C1 = A0 B0+ C0 (A0 + B0) = G0 + C0 P0
C2 = A1 B1 + C1 (A1 + B1) 

= G1 + C1 P1 = G1 + P1 G0 + P1 P0 C0 
C3 = A2 B2 + C2 (A2 + B2) = G2 + C2 P2 

= G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0 
C4 = A3 B3 + C3 (A3 + B3) = G3 + C3 P3

= G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + 
P3 P2 P1 P0 C0
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Carry Look Ahead (2)

� 74LS283 incorporates this feature to minimise the 
associated delay.  

� 74LS182, called Carry Look Ahead Generator, can 
accept these group-carry signals from the four ALUs to 
generate final carry bit in the case of 16-bit addition  

� If 64-bit adder is to be built, a second level carry look 
ahead generator, taking the group carry signals from 
each group of 16 bits, will have to be used.
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16-bit adder with carry look ahead
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Subtraction

Normally subtraction is performed by changing the sign of 
subtrahend and adding it to the minuend. 

Ways of representing the signed numbers:
� sign-magnitude 
� one�s complement 
� two�s complement forms
� BCD representations 
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Addition and subtraction 
(2�s complement)

�Add the two numbers and ignore the carry�
�Overflow occurs when there is a carry into the sign-bit 
position and no carry out of the sign-bit position, and 
vice-versa�

The overflow may, therefore be realised by

The sign changing is done by complementing the 
subtrahend and adding a 1 in the least significant bit 
position. 

A mode signal has to be created to instruct the unit whether 
the addition or subtraction should take place. 
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9-bit 2�s complement adder

CI CO
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Addition 

Addition is the most fundamental arithmetic operation. All the other arithmetic 

operations can be expressed in terms of addition.  Some time ago the design of the 

central processing unit and the consequent speed of the digital computer depended 

greatly on the design of the adder hardware.  Design of a multi-bit fast adder was 

one of the skills that a digital designer had to acquire in the early era of computers. 

The availability of low cost general purpose LSI circuits like microprocessors and 

digital signal processors, and the availability cost effective technology for realising 

special purpose LSIs changed the scene radically. At present the need for designing 

an arithmetic unit from a large collection of SSI and MSI circuits does not exist.  

However, it is desirable for a digital designer to be familiar with the realisation of 

simple arithmetic functions using combinational circuits. Many of these conventions 

and procedures are carried over to the software level while designing with LSIs.  This 

Unit presents only the very basics of adders based on combinational circuits. 

Simple Adders 

The simplest binary addition is to add two one-bit numbers. When the sum of two 

bits is more than 1 it is considered as an overflow and we generate a ‘carry’ bit. The 

truth-table associated with this addition process is given in the following, with A and 

B as the input one-bit numbers, S as the sum and C as the carry. 

A  B S C 

0 0 0 0 

0 1 1 0 

1 0 1 0 

1 1 

 

0 1 

   

The combinational circuit for the addition of two one-bit numbers is known as Half 

Adder.  The logical expressions for the two outputs, S and C, may be written from 

the above truth-table as;  

 S = A B/ + A/ B = A   B   

      C = A . B  

The gate level realisation of a half-adder is shown in the figure 1.  

   

   

 



A
B

S

C

 

FIG. 1: Half adder 

A half-adder has only provision to add two bits. If multi-bit numbers are to be added 

provision is to be made to take the carry bits coming from the previous stages. This 

requires an adder unit that performs addition with three bits. Such an adder is called 

Full-Adder. Let Ai and Bi be the i'th bits of an n-bit number, Ci-1 be the carry bit from 

the i-1 stage of addition, Si be the i'th bit of the sum, and Ci be the carry bit from the 

i'th stage of addition. The truth-table of a full adder is        

Ai Bi Ci-1 Si Ci 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 

  

1 1 

  

The logical expressions for the Sum and Carry bits can be written as in the following 

    Si = Ai
/ Bi / Ci-1 + Ai

/ Bi Ci-1
/ + Ai Bi

/ Ci-1
/ + Ai Bi Ci-1  

  Ci = Ai
/ Bi Ci-1 + Ai Bi

/ Ci-1 + Ai Bi Ci-1
/ + Ai Bi Ci-1  

    = Bi Ci-1 + Ai Ci-1 + Ai Bi 

 

The realisation of the full adder using gates is shown in the figure 2.  

           

 

 

 

 

 

 

FIG. 2: Full adder realised with basic gates 

S

Cout

-1



However, the full adder can also be realised in terms of half-adders as shown in the 
figure 3. 

   

 

 

 

 

 

FIG. 3: Full adder realised by two half-adders 

Adders for adding single bit numbers are of hardly any use in practice. Addition of 

multiple bit numbers requires cascading of a number of full adders.  A 4-bit adder 

put together with four single bit full adders is shown in the figure 4.   

 

 

 

 

    

      

 

 

 

 

 

 

 

FIG. 4: 4-bit binary adder 

It may be noted that the carry bit will have to ripple through all the stages and the 

delay of the four bit adder will be four times the delay associated with single bit full 

adders.  Besides, building such a circuit with basic gates or half adders requires large 

number of SSI circuits. There are two MSI circuits that offer four bit addition, 

available from all the vendors. These are 74LS283 (4-bit full adder) and 74LS181 (4-

bit arithmetic logic unit). 74LS181 is more than a adder, and can perform a variety 

of arithmetic and logic functions which can be selected by a set of control and mode 

signals The logical symbols of 74LS283 and 74LS181 are shown in the figure 5.  

 

Bi

Ai

C i-1

A

B

S

C

A

B

S Si

Ci

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

Σ

CO CI

 B

 A

A1

B1

Cin

A2

B2

A3

B3

S1

S2

S3

S4

C4

A4

B4 FA

FA

FA

FA



P0
Q0

F0

P1
Q1

F1

P2
Q2

P3
Q3

F2

F3

0

4

M 0
4

CP
CG
CO

P=Q
CI

ALU'181

CI CO

'283
0

3
0

3

0

3

P

Q

Σ

 

FIG. 5: Schematic representations of 74LS181 and 74LS283 

The internal circuitry of the 74LS283 is optimised to give minimum possible delay 

times between all the inputs and outputs.  These propagation delays are listed in the 

following: 

          tPLH     tPHL                 

       CI to    Σ   (max)    24     24    ns    

 CI to   CO  (max)   17     22    ns  

 A, B to  Σ   (max)   24     24    ns      

 A, B to CO  (max)   17    17    ns 

 

Adders with Features 

It often becomes necessary to build adders for numbers much larger than 4-bit 
numbers.  A 16-bit adder built with four units of 74LS283s is shown in the figure 6.   
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FIG. 6: 16-bit adder using 74LS283s 

The most important parameter of an adder is the addition time.  The addition time 

for the 16-bit adder using 74LS283s is given by; 

     Addition time = tP(CI1 to CO1) + tP(CI2 + CO2) +  tP(CI3 to CO3) + tP(CI4 to Σ)  

                       = 22 + 22 + 22 + 24  

                         = 90 ns     



If 74LS283 is replaced by 74LS181 the delay time will be slightly larger, as the 

circuitry within this unit is more complex. The net addition time for a 16-bit adder 

will be 108 ns. If a faster unit like 74S181 is used the addition time gets reduced to 

42 ns. 

While the internal circuitry of the available adder units is optimised to provide 

minimum delay for the addition of 4-bit numbers, the carry bit has to ripple from one 

group of bits to the next group in the case of a 16-bit adder. When the addition 

involves numbers that are 32-bit or 64-bit long, the carry bit will have to ripple 

through 8 and 16 stages of adders respectively. This will increase the addition time 

significantly. One method of reducing the addition time is to add extra circuitry that 

enables the determination of the final carry bit without waiting for it to ripple through 

all the stages. Such an arrangement is called Carry Look Ahead feature. This is 

based on deciding independently whether a particular stage in addition generates a 

carry bit or merely propagates the carry bit coming from the previous stage. Let Ai 

and Bi be the two i'th bits of multi-bit numbers A and B respectively. A carry bit is 

generated from this stage to the next one, whether there is a carry bit from the 

previous stage or not, if both bits are 1s. The carry bit from the previous stage is 

propagated to the next stage if one of the bits or both of them are 1s. These two 

functions, namely carry generate and carry propagate, can be defined as;  

         Carry Generator, Gi = Ai Bi   

         Carry Propagator, Pi = Ai + Bi    

Let, in a 4-bit adder, CI be the carry bit into the first stage and C1, C2, C3 and C4 be 

the carry bits from the four stages of addition.  G0, G1, G2 and G3 are the carry 

generates and P0, P1, P2 and P3 are the carry propagates from the four stages of 

addition of the 4-bit adder.  Then the relationships can be stated as below: 

 C1 = A0 B0+ C0 (A0 + B0) = G0 + C0 P0 

 C2 = A1 B1 + C1 (A1 + B1) = G1 + C1 P1 = G1 + P1 G0 + P1 P0 C0  

 C3 = A2 B2 + C2 (A2 + B2) = G2 + C2 P2  

      = G2 + P2 G1 + P2 P1 G0 + P2 P1 P0 C0  

  C4 = A3 B3 + C3 (A3 + B3) = G3 + C3 P3 

      = G3 + P3 G2 + P3 P2 G1 + P3 P2 P1 G0 + P3 P2 P1 P0 C0 

C4 can, therefore, be generated independently of C1, C2, and C3 as P and G 



functions can be generated from the A and B inputs directly. This is known as the 

carry look ahead feature. The circuitry within the unit 74LS283 incorporates this 

feature to minimise the associated delay.  But it becomes necessary to have 

additional circuitry to incorporate carry look ahead feature when an adder has to be 

designed for numbers more than four. This can be done through generating group 

carry generate and group carry propagate signals. In the context of commercially 

available ICs, four bits constitute a group.  The 74LS181 Arithmetic Logic Unit (ALU) 

generates both group carry generate and group carry propagate signals. These 

signals can be combined across stages in a manner similar to the relationships listed 

above. 74LS182, called Carry Look Ahead Generator, can accept these group-carry 

signals from the four ALUs to generate final carry bit in the case of 16-bit addition, 

as shown in the figure 7.   

If 64-bit adder is to be built, a second level carry look ahead generator, taking the 

group carry signals from each group of 16 bits, will have to be used. 
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FIG. 7: 16-bit adder with carry look-ahead feature 

Combined Addition and Subtraction 

Normally subtraction is performed by changing the sign of subtrahend and adding it 

to the minuend. However, there are several ways of representing the signed 



numbers. These include sign-magnitude, one’s complement, two’s complement forms 

and BCD representations. Here we consider addition and subtraction operations with 

numbers represented in two’s complement form. The reader is urged to work out the 

hardware for other representations as exercises. 

The algorithm for addition of two two’s complement numbers is 

 “Add the two numbers and ignore the carry” 

The algorithm for overflow is  

 “Overflow occurs when there is a carry into the sign-bit position and no carry 

out of the sign-bit position, and vice-versa” 

The overflow may, therefore be realised by 

  

The sign changing is done by complementing the subtrahend and adding a 1 in the 

least significant bit position. A mode signal, therefore, has to be created to instruct 

the arithmetic unit whether the addition or subtraction should take place. A 9-bit 

two’s complement adder-subtractor is shown in the figure 8. 
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FIG.3: 9-bit two’s complement adder-subtractor 
 



             
  

APPENDIX: DEPENDENCY NOTATION 

Introduction: Dependency Notation refers to the symbolic language developed as a part 

of the Standard ANSI/IEEE Std-91-1984. This notation was evolved to indicate the 

relationship of each input of a digital logic circuit to each output without explicitly showing 

the internal logic. However, this notation can only be used with regard to circuits of 

medium complexity and MSIs. When the MSIs are represented in this notation there would 

not be any need to constantly refer to the data sheet to understand the logical relationship 

between signals. This Appexdix introduces the basics of Dependency Notation. Its use with 

regard to specific ICs will be elaborated in the related Modules. The material presented in 

the following should be sufficient to understand and to draw the logic diagrams needed for 

the design of digital systems of reasonable complexity.  

General Definitions: IEEE Standard supports the notion of bubble-to-bubble logic design 

in with some important terms encountered are explained in the following. 

Logic State: One of two possible abstract states that may be taken on by a logic (binary) 

variable. 

0-State: The logic state represented by the binary number 0 and usually standing for Not 

Asserted state of a logic variable. 

1-State: The logic state represented by the binary number 1 and usually standing for 

Asserted state of a logic variable. 

External Logic State: A logic state assumed to exist outside symbol outline; (1) on an 

input line prior to any external qualifying symbol at the input or (2) on output line beyond 

any external qualifying symbol at that output. 

Internal Logic State: A logic state assumed to exist inside a symbol outline at an input 

or an output. 

Qualifying Symbol: It is graphics or text added to the basic outline of a device logic 

symbol to describe the physical or logical characteristics of the device. The “external 

qualifying symbol” mentioned above is typically an inversion bubble, which denotes a 

“negated” input or output, for which the external 0-state corresponds to the internal 1-

state. “Internal 1-state” may be interpreted as the corresponding signal getting asserted. 

Similarly “internal 0-state” may be interpreted as the corresponding signal getting not-

asserted. 

A symbol for a digital circuit comprises of an outline or a combination of lines together 

with one or more qualifying symbols. Lines on the left hand side indicate inputs while the 

lines on the right hand side indicate outputs. This concept of composing the symbol is 

illustrated in the figure 1. 
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FIG. 1: Composition of a logic circuit symbol 

General additional information may be included in a symbol outline in the diagrams for 

digital circuits. A qualifying symbol is included at the top to indicate the general function 

performed by the logic circuit under consideration. Some of these qualifying symbols to 

indicate the device functions are listed in the following.  

 SYMBOL  DEVICE FUNCTION 

    >  OR 

    &  AND 

   =1  Exclusive OR 

   =  All inputs at the same state 

   2k  Even number of inputs Asserted 

   2k+1  Odd number of states Asserted 

     Buffer 

     Schmitt Trigger 

   X/Y  Code Converter 

   MUX  Multiplexer 

   DX  Demultiplexer 

      Σ  Adder 

  P - Q  Subtractor 

  CPG  Carry look-ahead generator 

  ALU  Arithmetic logic unit 

  COMP  Magnitude comparator 

The input and output lines will have qualifying symbols inside the symbol outlines. These 

qualifying symbols are illustrated in the following. 

 SYMBOL      SIGNAL FUNCTION 

                          Asserted Low input (External 0 = Internal 1) 

   

 Asserted Low output (Internal 1 = External 0) 

  

 Asserted High input (External 1 = Internal 1) 

    

                                Asserted High output (Internal 1 = External 1)  



             
  

 

 Bithreshold input (Input with hysteresis) 

 

 Open-collector or open-drain output   

 

 Positive edge control input signal 

 

 Negative edge control input signal 

 

 3-State output 

 

 Postponed output (pulse triggered flip-flop) 

 

Enable input, when at its internal 1-state, all outputs are enabled.   
  When at its internal 0-state all outputs are at the internal 0-state  

     

 Data input to a storage element  

 

 Shift right (left) inputs m= 1, 2, 3, etc.  

 

 Counting up (down) inputs m= 1, 2, 3, etc. 

 

   

 Binary Grouping. m is the highest power of 2. 

 

  Content equals (e.g., 9) 

 

 Internal connection 

 

 Internal connection with negation 

   

  Internal input (virtual input)  

 

 Internal output (virtual output) 

 

 Internal dynamic connection 

When the logic circuit has one or more inputs that are common to more than one element 

of the circuit, the symbol is modified to include a common control block. The distinctive 

EN

m m

m m+ -

0
m }
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shaped control block adopted by IEC is shown in the figure 2. Unless otherwise qualified 

specifically within the context of Dependency Notation the inputs to the control block are 

assumed to be common to all the elements within the circuit. 
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FIG 2: Symbol for common control block 

If an output is dependent on all the elements of the circuit it is shown as a common 

output, and the common output element is distinctly shown by being separated from the 

other elements by a double line as shown in the figure 3. It may be noted that in drawing 

the symbols it is not permitted to represent the signals entering or leaving from the top or 

bottom section of the logic symbol. 

 
 

FIG 3: Symbol for common output block 

Medium Scale Integrated (MSI) circuits available from many vendors are designed to 

perform well defined combinational or sequential functions. The commonly available MSIs 

include combinational circuits like multiplexers, demultiplexers, encoders, arithmetic units 

and comparators, and sequential circuits like registers, counters and display controllers. 

The aim of the Dependency Notation is to give a detailed description of the function of 

each input/output and the interrelationship between signals of the IC within the symbol 

itself, using simple codes. Such a notation will greatly help in designing with MSIs without 

constant dependence on the data sheets. While the dependency notation can be used to 

compose symbols for circuits that are composed of a few SSIs and MSIs, it is not always 

possible to create a symbol for every circuit. For example it is not feasible to compose a 



             
  

symbol for an LSI chip like a microprocessor, using the dependency notation. 

Dependency notation is a means of denoting the relationships, between inputs, outputs or 

inputs and outputs, without actually showing all the elements and interconnections 

involved. It should not be used to replace the symbols for combinational elements. It 

gives information that supplements that provided by the qualifying symbols for an 

element's function. The signals are classified as `affecting' and `affected'. An input as well 

as an output signal can be an affecting signal or affected signal. There are ten types of 

dependencies identified under this Standard. These are explained in the following. 

AND Dependency (G Dependency): A common relationship between two signals is to 

have them ANDed together. This AND relationship in Dependency notation is shown as 

indicated in the figure 4. The input B is ANDed with input A and the complement of B is 

ANDed with C. the letter G has been chosen to indicate AND relationships and is placed at 

input B, inside the symbol. An arbitrary number (1 has been used here) is placed after the 

letter G and also at each affected input. Note the superscript slash after 1 at input C.  

 

 

FIG. 4: G dependency between inputs 

In figure 5 output B affects input A with an AND relationship. The lower example shows 

that it is the internal logic state of B, unaffected by the negation sign that is ANDed. 

 

 

 

 

FIG. 5: G dependency between outputs and inputs 

 



Figure 6 shows A to be ANDed with a dynamic input B. 

 

 

 

 

 

FIG. 6: G dependency with a dynamic input 

The rules for G-dependency can be summarised as:  

When a Gm input or output (m is a number) stands at its internal 1-state (Asserted) all 

the inputs and outputs affected by this Gm stand at their normally defined internal logic 

states.  

When Gm input or Gm output stands at its internal 0-state (Not Asserted) all the inputs 

and outputs affected by it stand at their 0-state (Not Asserted).  

Conventions for the Application of Dependency Notation in General: The rules for applying 

dependency relationships in general follow the same pattern as was illustrated for G-

dependency. Application of dependency notation is accomplished by: 

Labelling the input (or output) affecting other inputs or outputs with a letter symbol 

indicating the relationship involved followed by an identifying number, arbitrarily chosen. 

Labelling each input or output affected by that affecting input (or output) with that same 

number. 

If it is the complement of the internal logic state of the affecting input or output that does 

the affecting, then a bar is placed over the identifying numbers at the affected inputs or 

outputs. If the affected input or output requires a label to denote its function this label will 

be prefixed by the identifying number of affecting input. If an input or output is affected 

by more than one affecting input, the identifying numbers of each of the affecting inputs 

will appear in the label of the affected one, separated by commas. The left-to-right 

sequence of these numbers is the same as the sequence of the affecting relationships. 

If the labels denoting the functions of affected inputs or outputs must be numbers, the 

identifying numbers to be associated with both affecting inputs and affected inputs or 

outputs will be replaced by another character selected to avoid ambiguity 

OR Dependency (V Dependency): The symbol denoting OR dependency is the letter V. 

Each input or output affected by a Vm input or Vm output stands in an OR relationship 

with this Vm input or output.  When Vm input or output stands at its internal 1-state 

(Asserted) all inputs an outputs affected by this Vm input or Vm output stand at their 

internal 1-state (Asserted). When a Vm input or Vm output stands at its internal 0-state 

(Not Asserted), all inputs and outputs affected by this Vm input or Vm output stand at 

1

G1A A

B
B
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their normally defined internal logic states. The nature of V dependency is illustrated in 

the figure 7. 

Negate Dependency (N Dependency): The symbol denoting negate dependency is the 

letter N. Each input or output affected by an Nm input or Nm output stands in an Exclusive 

OR relationship with this Nm input or Nm output. When Nm input or Nm output stands at 

its internal 1-state (Asserted), the internal logic state of each input and each output 

affected by this Nm input or Nm output is the complement of the normally defined internal 

logic state of the input or output. When Nm input or Nm output stands at its internal 0-

state, all inputs and outputs affected by this Nm input or Nm output stand at their 

normally defined internal logic states. This relationship is illustrated in the figure 8. 

 

 
FIG. 7: V (OR) dependency 

 

 
   

FIG 8: Illustration of N dependency 

Interconnection Dependency (Z Dependency): The symbol denoting interconnection 

dependency is the letter Z. Interconnection dependency is used to indicate the existence 

of internal logic connections between inputs, outputs, internal inputs, and internal outputs, 

in any combination. When a Zm input or Zm output stands at its internal 1-state 

(Asserted), all inputs and outputs affected by this Zm input or Zm output stand at their 

internal 1-states (Asserted), unless modified by additional dependency notation. When a 

Zm input or Zm output stands at its internal 0-state Not Asserted, all inputs and outputs 

affected by this Zm input or Zm output stand at their internal 0 states (Not Asserted), 

unless modified by additional dependency notation. The nature of Z dependency is 

illustrated in the figure 9. 

Control Dependency (C Dependency): The symbol denoting control dependency is the 



letter C. Control dependency should only be used for sequential elements. It implies more 

than a simple AND relationship. It identifies an input that produces action, for example, 

the edge-triggered clock of a bistable circuit or the level-operated data enable of a 

transparent latch. When a Cm input or Cm output stands at its internal 1-state  

(Asserted), the inputs affected by this Cm input or Cm output have their normally defined 

effect on the function of the element. When a Cm input or Cm output stands at its internal 

0-state (Not asserted), the inputs affected by Cm are disabled and have no effect on the 

function of the element. This dependency is explained through examples in the figure 10. 

 

 
 

 
FIG. 9: Illustration of Z dependency 



             
  

 

 
 

FIG. 10: Illustration of Control dependency 

S (Set) and R (Reset) Dependencies: The symbol denoting the set dependency is S 

and the symbol denoting the reset dependency is R. Set and reset dependencies are used 

if it is necessary to specify the effect of the combination R = S = 1 on a bistable element. 

These dependencies should not be used if such specification is not necessary. When a Sm 

input stands at its internal 1-state (Asserted) the outputs affected by this Sm input will 

take on the internal logic states they normally would take on for the combination S = 1, R 

= 0, regardless of the state of any R input. When an Sm input stands at its internal 0-

state (Not asserted) it has no effect. 

When an Rm input stands at its internal 1-state (Asserted) the outputs affected by this 

Rm input will take on the internal logic states they normally would take on for the 

combination S = 0, R = 1 regardless of the state of the S input. When an Rm input stands 

at its internal 0-state it has no effect. The R and S dependencies are illustrated in the 

figure 11. 

     a  b     c    d                       
          0  0    No change   
 0  1     0   1           
 1  0     1   0           
 1  1  Not specified 
   
 a  b      c    d  
     0  0     No change  

     0  1      0   1           
     1  0      1   0           
     1  1      1   0 
           
     a  b      c    d  



           0  1     No change                      
      

0  1      0   1                    
            

1  0      1   0                                   
1  1      0   1 

           
a  b      c   d 

           0  1     No change   
     0  1     0   1  
              1  0     1   0  
              1  1     1   1 
 

a  b      c   d 
                0  1     No change  
                0  1     0   1  
                1  0     1   0  
                 1  1     0   0 
 

FIG 11: Illustration of R and S dependencies 

Enable Dependency (EN Dependency): The symbol denoting enable dependency is EN. 

Enable dependency is used to indicate an Enable input that does not necessarily affect all 

outputs of an element. It can also be used when one or more inputs of an element are 

affected. When this input stands at its internal 1-state (Asserted), all the affected inputs 

and outputs stand at their normally defined internal logic states and have their normally 

defined effect on elements or distributed functions that may be connected to the outputs, 

provided no other inputs or outputs have an overriding and contradicting effect. When this 

input stands at its internal 0 state (Not Asserted), all the affected open-circuit outputs 

stand at their external high-impedance states, all 3-state outputs stand at their normally 

defined internal logic states and at their external high-impedance states, and other types 

of outputs stand at their internal 0-states. The nature of EN dependency is illustrated in 

the figure 12. 
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If A = 0, B disabled and D = C   If A = 1, C disabled and D = B 

FIG 12: Illustration of the EN dependency 

Mode Dependency (M Dependency): The symbol denoting mode dependency is the 

letter M. Mode dependency is used to indicate that the effects of particular inputs and 



             
  

outputs of an element depend on the mode in which the element is operating. When an 

Mm input or Mm output stands at its internal 1-state (Asserted), the inputs affected by 

this Mm input or Mm output have their normally defined effect on the function of the 

element and the outputs affected by this Mm input or Mm output stand at their normally 

defined internal logic states, that is, the inputs and outputs are enabled. When an Mm 

input or Mm output stands at its internal 0-state, the inputs affected by this Mm input or 

Mm output have no effect on the function of the element and at each output affected by 

this Mm input or Mm output, any set of labels containing the identifying number of that 

Mm input or output has no effect and is to be ignored. When an affected input has several 

sets of labels separated by slashes, any set in which the identifying number of Mm input 

or Mm output appears has no effect and is to be ignored. This represents disabling of 

some of the functions of a multifunction input. When an output has several different sets 

of labels separated by slashes, only those sets in which the identifying number of this Mm 

input or Mm output appears are to be ignored. This represents disabling or selection of 

some of the function of a multifunction output, or the modification of some of the 

characteristics or dependent relationships of the output. These concepts are illustrated in 

the figure 13.  

The circuit in the figure 13 has two inputs, B and C, that control which one of four modes 

(0, 1, 2, or 3) will exist at any time. Inputs D, E and F are D-inputs subject to dynamic 

control (clocking) by the A input. The numbers 1 and 2 are in the series chosen to indicate 

the modes of inputs E and F are only enabled in mode 1 (parallel loading) and input D is 

only enabled in mode 2 (for serial loading). Note that input A has three functions. It is the 

clock for entering data. In mode 2, it causes right shifting of data, which means a shift 

away from the control block. In mode 3, it causes the contents of the register to be 

incremented by one count.   

M Dependency affecting Outputs : When an Mm input or Mm output stands at its internal 

1 state, the affected outputs stand at their normally defined internal logic states, that is, 

the outputs are enabled. 
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FIG.13: Illustration of M dependency. 

When an Mm input or Mm output stands at its internal 0 state, at each affected output any 

set of labels containing the identifying number of that Mm input or Mm output has no 

effect and is to be ignored. When an output has several different sets of labels separated 

by slashes (e.g., C4/->/3+), only those sets in which the identifying number of this Mm 

input of Mm output appears are to be ignored. In the figure 5.14, mode 1 exists when the 

A input stands at its internal 1 state. The delayed output symbol is effective only in mode 

1 (when input A = 1) in which case the device functions as a pulse-triggered flop-flop 

(Master-Slave flip-flop). When the input A = 0, the device is not in mode 1 so the delayed 

output symbol has no effect and the device functions as a transparent latch. 
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FIG. 14: Type of flip-flop determined by mode 

If in figure 15, if the input A stands at its internal 1 state establishing mode 1, output B 

will stand at its internal 1 state when the content of the register equals 9. Since the 

output B is located in the common-control block with no defined function outside of mode 

1, this output will stand at its internal 0 state when input a stands at its internal 0 state, 

regardless of the register content. 

M1A
B
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FIG. 15: Disabling an output of the common-control block 

Address Dependency (A Dependency): The symbol denoting address dependency is 

the letter A. Address dependency provides a clear representation of those elements, 

particularly memories that use address control inputs to select specified sections of a 

multidimensional array. Address dependency allows a symbolic representation of only a 

single general case of the sections of the array, rather than requiring a symbolic 

representation of the entire array. When this input stands at its internal 1-state 

(ASSERTED), the inputs affected by this input (that is, the inputs of the section of the 

array selected by this input) have their normally defined effect on the elements of the 

selected section. Also, the internal logic states of the outputs affected by this input (that 

is, the outputs of the selected section) have their normal effect on the OR function (or the 

indicated functions) determining the internal logic states of the outputs of the array. 



             
  

When the input stands at its internal 0-state (Not asserted), the inputs affected by this 

input (that is, the inputs of the section selected by this input) have no effect on the 

elements of this section. Also, the outputs affected by this input (that is, the outputs of 

the section selected by this input) have no effect on the outputs of the array. An affecting 

address input is labelled with the letter A followed by an identifying number that 

corresponds to the address of the particular section of the array selected by this input. 

The nature of address dependency is illustrated in the figure 16. 
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FIG 16: Illustration of address dependency. 
 
Symbols based on the Dependency Notation, of some of the commonly encountered 

integrated circuits are given in the figure 17. The reader is advised to understand and 

interpret the function and operation of these integrated circuits using the dependency 

notation. 



0
1
2

E N

0
1

3
4

5
6
7

2

G 0
7
_

DMUX

&

X3
X2

H

138
0

G
_
3

MUX
0
1

0
1
2
3

S0
S1

DI0
DI1
DI2

DI3

Y

'164

R

C1/1

& 1D

R
C1/

195A
M1

1, 2 J

1, 2 K
1', 2 D

1', 2 D

 

FIG. 17: Symbols of some common integrated circuits. 
 
DRAWING DIGITAL CIRCUIT DIAGRAMS 

The gate shown in the figure 18(a) is not commercially available. However, a minor 

modification will establish this correspondence. This is shown in the figure 18(b). Each one 

of the gates shown will correspond to the gates that are commercially available. 

 

 
FIG. 18: Redrawing of a logic symbol to correspond to the actual gates used. 

 
Documentation is an important aspect of any design exercise. Any such documentation 

must be consistent, use standard symbols and follow unambiguous procedures. Many 

varieties of documents need to be prepared to describe a given digital system 

exhaustively. It is necessary for any organisation concerned with the design and 

development and/or manufacturing and marketing of digital systems to evolve and 

implement a documentation standard for effective communication between individuals 

concerned with various aspects of the product. The basic rules to be followed in drawing 

the digital circuit diagrams will be presented in the following.  

The basic rules are: 



             
  

 All signals flow from left to right. In case of any deviation from this convention the 

direction must be indicated by an arrow. Such a need may arise when there is 

requirement to feed the output of a circuit module to the input of circuit module 

which is otherwise upstream from the signal flow point of view. 

 External inputs should enter the left hand side of the diagram. Outputs from the 

circuit should be shown in the right hand side. 

 Use polarised mnemonic notation and all the standard symbols thereof. 

 Use dependency notation to represent any MSI and LSI circuits. 

 All signals should have properly defined mnemonics with their assertion levels 

indicated. 

 All gates represented in the circuit diagram must correspond to the actual 

hardware elements used. But the choice of operator symbol (NAND, NOR, OR, 

EXOR ETC.) for gates must be indicative of the function they perform. 

 Each operator symbol should be given a number to correspond with the actual IC 

used. These are designated as U1, U2 etc. A particular number, say U2, may be 

given to more than one logic operator as an IC may have more than one functional 

element. 

 The pin numbers corresponding to the specific IC used should be shown near the 

inputs or the outputs of the logic operator, or outside the symbol outline in the 

case of MSIs and LSIs. 

 The specific ICs used along with their pin numbers for VCC and GND (VBB) should be 

shown at a convenient place on the circuit diagram. 

 If the circuit diagram is large and is to be drawn on a large sheet, zonal co-

ordinates should be incorporated. 

 If a discontinuity is to be introduced in a signal line, its destination or source, if 

needed in terms of zonal coordinates, should be indicated at the discontinuity. 

Consider the circuit diagram shown in the figure19. It is redrawn as per the rules stated 

above and shown in the figure 20.  

 

 
FIG. 19: Example of a combination circuit 



 

 
 

 
FIG. 20: Circuit diagram of figure 20 redrawn as per the rules of documentation standard 
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